бесплатно рефераты
 
Главная | Карта сайта
бесплатно рефераты
РАЗДЕЛЫ

бесплатно рефераты
ПАРТНЕРЫ

бесплатно рефераты
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

бесплатно рефераты
ПОИСК
Введите фамилию автора:


Пожарная опасность маслонаполненных трансформаторов. Требования к системам противопожарной защиты

Пожарная опасность маслонаполненных трансформаторов. Требования к системам противопожарной защиты

"УТВЕРЖДАЮ"

Начальник 15-Й пожарной части

майор внутренней службы

Н.Ю. ВОЛОДИН

РЕФЕРАТ

ТЕМА: ПОЖАРНАЯ ОПАСНОСТЬ МАСЛОНАПОЛНЕННЫХ ТРАНСФОРМАТОРОВ. ТРЕБОВАНИЯ К СИСТЕМАМ ПРОТИВОПОЖАРНОЙ ЗАЩИТЫ

Выполнил:

Ст. инспектор ПЧ-15

капитан вн. службы

Солдатов Ю.В.

г. БАЛАКОВО

2001 г.

1. Развитие трансформаторостроения

Изобретателем трансформатора является русский, учённый П.Н. Яблочков. В 1876 г. Яблочков использовал индукционную катушку с двумя обмотками в качестве трансформатора для питания изобретённых им электрических свечей. Трансформатор Яблочкина имел незамкнутый сердечник. Трансформаторы с замкнутым сердечником, появились значительно позднее, в 1884 г. С изобретением трансформатора возник технический интерес к переменному току, который до этого времени не применялся.

Выдающийся русский электротехник М.О. Доливо-Добровольский в 1889 г. предложил трехфазную систему переменного тока, построил первый трехфазный асинхронный двигатель и первый трехфазный трансформатор. На электротехнической выставке во Франкфурте-на-Майне в 1881 г. Доливо-Добровольский демонстрировал опытную высоковольтную электропередачу трехфазного тока протяжённостью 175 км. (из местечка Лауфена во Франкфурте-на Майне); трехфазный генератор имел мощность 230 ква при напряжении 95 в.

При помощи трехфазных трансформаторов напряжение генератора в Лауфене повышалось до 15000 в и понижалось во Франкфурне-на-Майне до 65 в (фазное значение), при котором осуществлялось питание трехфазного асинхронного двигателя для насосной установки мощностью 75 квт. При дальнейших опытах напряжение в линии электропередачи повышалось до 28000 в посредством последовательного включения обмотки ВН двух трансформаторов. К.П.Д. электропередачи был 77,4% и считался тогда высоким.

В дальнейшем начали применяться масляные трансформаторы, т.к. было установлено, что масло является не только хорошей изоляцией, но и хорошей охлаждающей средой для трансформаторов.

ХХ столетие характеризовалось быстрым ростом промышленности и транспорта на базе электрификации. К трансформаторам и электрическим машинам предъявлялись более высокие требования в отношении повышения их экономичности, уменьшения массы и габаритов. Проводилась большая работа по изучению электромагнитных и тепловых процессов, происходящих при работе трансформаторов и электрических машин, изысканию новых изоляционных материалов и улучшению свойств Электротехнической стали.

В царской России не было своей трансформаторной и электромашиностроительной промышленности. Имевшиеся в России трансформаторные и электромашиностроительные заводы принадлежали иностранным фирмам и по существу являлись сборочными мастерскими, где машины и трансформаторы собирались из частей, привозимых из-за границы.

В настоящее время электромашинно- и трансформаторостроение развилось в крупнейшую отрасль электропромышленности. Отечественные заводы выпускают трансформаторы различных мощностей и конструкций.

2. Назначение трансформаторов

Трансформатор представляет собой статический электромагнитный аппарат с двумя (или более) обмотками, предназначенный чаще всего для преобразования переменного тока одного напряжения в переменный ток другого напряжения. Преобразование в трансформаторе осуществляется переменным магнитным полем. Трансформаторы широко применяются при передаче электрической энергии на большие расстояния, распределении её между приёмниками, а также в различных выпрямительных, усилительных, сигнализационных и других устройствах.

При передаче электрической энергии от электростанции к потребителям сила тока в линии обуславливает потери энергии в этой линии и расход цветных металлов на её устройство. Если при одной и той же передаваемой мощности увеличить напряжение, то сила тока в такой же мере уменьшиться, а следовательно, можно будет применить провода с меньшим поперечным сечением. Это сократит расход цветных металлов при устройстве линии электропередачи и снизит потери энергии в ней.

Электрическая энергия вырабатывается на электростанциях синхронными, генераторами при напряжение 11-20 кв; в отдельных случаях применяют напряжение 30-35 кв. Хотя такие напряжения являются слишком высокими для их непосредственного использования в производстве и для бытовых нужд, они недостаточны для экономической передачи электроэнергии на большие расстояния. Дальнейшее повышение напряжения в линиях электропередачи (750 кв и более) осуществляется повышающими трансформаторами.

Приёмники электрической энергии (лампы накаливания, электродвигатели и т.д.) из соображений безопасности рассчитывают на более низкое напряжение (110-380 в). Кроме того, изготовление электрических аппаратов, приборов и машин на высокое напряжение связано со значительными конструктивными сложностями, так как токоведущие части этих устройств при высоком напряжении требуют усиленной изоляции. Поэтому высокое напряжение, при которой происходит передача энергии, не может быть непосредственно использовано для питания приёмников и подводится к ним через понижающие трансформаторы.

Электрическую энергию переменного тока по пути от электростанции, где она вырабатывается, до потребителя приходится трансформировать 3-4 раза. В распределительных сетях понижающие трансформаторы нагружаются неодновременно и не на полную мощность. Поэтому полная мощность трансформаторов, используемых для передачи и распределения электроэнергии, в 7-8 раз больше мощности генераторов, устанавливаемых на электростанциях.

3. Номинальные данные трансформатора

Полезная мощность, на которую рассчитан трансформатор по условиям нагревания, т.е. мощность его вторичной обмотки при полной (номинальной) нагрузки называется номинальной мощностью. Эта мощность выражается в единицах полной мощности - вольтамперах (ва) или киловольт-амперах (ква). В ваттах или киловаттах выражается активная мощность трансформатора, т.е. та мощность, которая может быть преобразована из электрической в механическую, тепловую, химическую, световую и т.д.

Сечения проводов обмоток и всех частей трансформатора, так же как и любого электротехнического аппарата или электрической машины, определяются не активной составляющей тока или активной мощностью, а полным током, протекающему по проводнику и, следовательно, полной мощностью. Все прочие величины, характеризующие работу трансформатора, в условиях, на которые не рассчитан, также называются номинальными.

Каждый трансформатор снабжён из материала, не подверженного атмосферным влияниям. Щиток прикреплен к баку трансформатора на видном месте и содержит его номинальные данные, которые нанесены травлением, гравировкой, выбиванием или другим способом, обеспечивающим долговечность знаков. На щитке трансформатора указаны следующие данные:

1. Марка завода-изготовителя.

2. Год выпуска.

3. Заводской номер.

4. Обозначение типа.

5. Номер стандарта, которому соответствует изготовленный трансформатор.

6. Номинальная мощность (ква).

7. Номинальное напряжение и напряжения ответвления обмоток (в или кв).

8. Номинальные токи каждой обмотки (а).

9. Число фаз.

10. Частота тока (гц).

11. Схема и группа соединения обмоток трансформатора.

12. Напряжение короткого замыкания (%).

13. Род установки (внутренняя или наружная).

14. Способ охлаждения.

15. Полная масса трансформатора (кг или т).

16. Масса масла (кг или т).

17. Масса активной части (кг или т)

18. Положения переключателя, обозначенные на его приводе.

Для трансформатора с искусственным воздушным охлаждением дополнительно указана мощность его при отключенном охлаждении. Заводской номер трансформатора выбит также на баке под щитком, на крышке около ввода ВН фазы А и на левом конце верхней полки ярмовой балки магнитопровода.

Условное обозначение трансформатора состоит из буквенной и цифровой частей. Буквы обозначают следующее: Т- трехфазный трансформатор, О - однофазный, М - естественное масляное охлаждение, Д - масляное охлаждение с дутьем (искусственное воздушное и с естественной циркуляцией масла), Ц - масляное охлаждение с принудительной циркуляцией масла через водяной охладитель, ДЦ - масляное с дутьем и принудительной циркуляцией масла, Г - грозоупорный трансформатор, Н в конце обозначения - трансформатор с регулированием напряжения под нагрузкой, Н на втором месте - заполненный негорючим жидким диэлектриком, Т на третьем месте - трехобмоточный трансформатор.

Первое число, стоящее после буквенного обозначения трансформатора, показывает номинальную мощность (ква), второе число - номинальное напряжение обмотки ВН (кв). Так, тип ТМ 6300/35 обозначает трехфазный двухобмоточный трансформатор с естественным масляным охлаждением мощностью 6300 ква и напряжением обмотки ВН 35 кв.

Буква А в обозначении типа трансформатора обозначает автотрансформатор. В обозначении трехобмоточных автотрансформаторов букву А ставят либо первой, либо последней. Если автотрансформаторная схема является основной (обмотки ВН и СН образуют автотрансформатор, а обмотки НН дополнительная) букву А ставят первой, если трансформаторная схема является дополнительной, букву А ставят последней.

4. Трансформаторное масло

Роль масла в трансформаторах исключительно велика. Оно обладает высокими диэлектрическими свойствами и используется в качестве изоляции, а также, являясь хорошим теплоносителем, обеспечивает отвод теплоты от внутренних частей трансформатора.

Для охлаждения трансформаторов важное значение имеет скорость циркуляции масла. Скорость конвективного движения масла зависит от его вязкости. Последняя изменяется в широких пределах с изменением температуры масла (рис. 1) которая в свою очередь зависит от нагрузки трансформатора и от естественно изменяющейся температуры охлаждающей среды.

160

120

80

40

20 0 20 40 60

Рис. 1. Зависимость коэффициента динамической вязкости трансформаторного масла от температуры масла.

В настоящее время в отечественном трансформаторостроении широко применяется масла марки ТКп, селективной очистки ТСп и абсорбционной очистки марки ТАп с антиокислительной присадкой "ионол". Освоен выпуск и постоянно расширяется объём применения масел Т-750 и Т-1500, которые обладают более высокими электроизоляционными свойствами и противоокислительной стабильностью. Разрабатывается арктическое масло вместо масла марки АТМ-65.

В таблицах 1 и 2 приведены основные физико-химические показатели отечественных масел.

Таблица 1

Наименование показателя

ТКп

ТСп

ТАп

Т-750

Вязкость кинематическая, не более, сСт

-при +20 гр.

-при +50 гр.

-при -30 гр.

-

9,0

1500

28,0

9,0

-

30,0

9,0

-

-

9,0

1800

Кислотное число, не более, мг КОН на 1 г масла

0,02

0,02

0,02

0,01

Температура вспышки, определяемая в закрытом тигле, не менее, гр.

135

150

135

135

Температура застывания, не более, гр

-45

-45

-50

-55

Общая стабильность против окисления:

кислотное число окислённого масла, не более, мг КОН на 1 г масла

количество осадка после окисления, не более, %

0,10

0,01

0,10

отс.

0,10

0,01

0,03

отс.

Таблица 2

Наименование показателя

Т-1500

АТМ-65

BSJ

Вязкость кинематическая, не более, сСт

-при +20 гр

-при +50 гр

-при -30 гр

-

8,0

1500

-

3,5

1000

-

6,8

-

Кислотное число, не более, мг КОН на 1 г

масла

-

0,015

0,01

Температура вспышки, определяемая в закрытом тигле, не менее, гр

135

113

146

Температура застывания, не более, гр

-45

-65

-32

Общая стабильность против окисления:

кислотное число окислённого масла, не более, мг КОН на 1 г масла

количество осадка после окисления, не более, %

0,05

отс.

0,015

отс.

0,01

отс.

В процессе эксплуатации трансформаторов химические и электрохимические свойства масла претерпевают изменения. Этот процесс называется старением.

В результате старения ухудшаются электроизоляционные свойства трансформаторного масла, происходит накопление осадка на активных частях трансформаторов, что затрудняет отвод теплоты от них и ухудшает её электроизоляционные свойства.

В трансформаторах старение масла происходит при повышенной температуре за счёт совместного воздействия на масло молекулярного кислорода воздуха и электрического поля при катализирующем воздействии материалов, из которых изготовлен трансформатор. Доминирующим фактором старения трансформаторного масла являются окислительные превращения входящих в его состав углеводородов.

По мере накопления в масле кислых соединений образуются продукты глубокого окисления - осадки, нерастворимые в масле.

Скорость окисления масла зависит при прочих равных условий от концентрации растворённого в нем кислорода, который проникает через поверхность соприкосновения масла с воздухом. Окислительные реакции протекают как на поверхности раздела масло - воздух, так и в объёме масла. Если добиться практически полного удаления из масла, растворённого в нём кислорода, то можно предотвратить процесс окисления. На этом принципе основано применение герметичных трансформаторов, в которых масло тем или иным способом защищено от контакта с окружающим воздухом.

Температура способствует активизации окислительного процесса углеводородов масла, ускоряя его примерно в 2 раза при увеличении температуры на каждые 10 гр.

Электрическое поле напряжённостью, характерной для трансформаторов (до 5000 В/мм), также ускоряет окисление трансформаторного масла, при этом изменяется соотношение конечных продуктов окисления: образуется много воды, в заметных количествах выделяется водород и метан. Одновременно происходит накопление осадка в зонах максимальной напряженности поля, что ухудшает охлаждение трансформатора, снижает электрическую прочность изоляции.

Для повышения устойчивости трансформаторных масел от окисления применяют в качестве присадок антиокислители (ингибиторы).

5. Правила технической эксплуатации трансформаторов

Установка трансформаторов должна соответствовать требованиям ПУЭ.

На баках однофазных трансформаторов должны быть нанесены расцветка фаз. На баках трехфазных трансформаторов и групп однофазных трансформаторов должны быть сделаны надписи, указывающие мощность и порядковые подстанционные номера трансформаторов.

Трансформаторы наружной установки должны быть окрашены в светлые тона.

На дверях трансформаторных пунктов и камер должны быть укреплены предупредительные плакаты установленного образца и формы. Двери должны быть заперты на замок.

Вновь устанавливаемые трансформаторы при отсутствии соответствующего указания завода-изготовителя могут не подвергаться внутреннему осмотру со вскрытием.

Осмотр со вскрытием необходим при наличии наружных повреждений, допущенных при транспортировании или хранении, вызывающих предположение о возможности внутренних повреждений.

Трансформаторы, оборудованные газовой защитой, должны быть установлены так, что крышка имела подъем по направлению к газовому реле не менее 1-1,5%, а маслопровод от трансформатора к расширителю - не менее 2-4%.

Выхлопная труба должна быть снабжена мембраной и соединена с верхней частью расширителя. На маслопроводе между расширителем и газовым реле должен быть установлен кран.

Для обслуживания трансформаторов должны быть обеспечены удобные и безопасные условия наблюдения за уровнем и температурой масла, газовым реле, а также отбора проб масла.

Осмотр высоко расположенных частей работающих трансформаторов габарита и выше должен производиться со стационарных лестниц с учётом требований Правил техники безопасности.

Все маслонаполненные трансформаторы, оборудованные расширителем, должны иметь термометры для измерения температуры масла.

На трансформаторах с соволовым наполнением для контроля за давлением внутри бака должны быть установлены мановакуумметры и реле давления, срабатывающие при давлении внутри бака выше 0,6 ат.

Обслуживающий персонал должен вести постоянное наблюдение за показаниями мановакуумметров, снижая нагрузку трансформаторов при увеличении давления выше нормы (0.5 ат).

Для контроля за максимальной нагрузкой трансформаторы мощностью 1000 ква и выше должны снабжаться амперметрами. На подстанциях без постоянного дежурства рекомендуется устанавливать амперметры биметаллического типа с буксирной стрелкой. Устройство вентиляции трансформаторных пунктов и камер должны обеспечивать работу трансформаторов с номинальной нагрузкой.

При установке сухих трансформаторов охлаждающий воздух не должен содержать пыль, паров кислот и других разъедающих веществ.

Относительная влажность воздуха и колебания температуры не должны превышать пределов, указанных в заводской инструкции.

Трансформаторные установки должны быть оснащены противопожарными средствами в соответствии с требованиями ПУЭ. При наличии под трансформаторами маслоприёмных устройств дренаж от них и маслопроводы должны содержаться в исправном состоянии.

Уровень масла в расширителе неработающего трансформатора не должен быть ниже уровня контрольных черт, соответствующих уровням масла в трансформаторе при температурах окружающей среды -35, +15 и +35 гр.

Принудительная циркуляция масла в системе охлаждения трансформатора должна осуществляться непрерывно вне зависимости от величины нагрузки.

Эксплуатация трансформаторов с принудительной циркуляцией масла без сигнализации о прекращении циркуляции масла, охлаждающей воды или остановки вентиляторов дутья не допускается.

При наличии маслоохладителей с водяным охлаждением маслонасос должен быть установлен до маслоохладителя по ходу масла. Давление масла в маслоохладителях должно превышать давление, пропускаемое через них воды.

Для трансформаторов с принудительным охлаждением допускаются аварийные режимы работы с прекращением циркуляции масла или воды, либо при остановке вентиляторов дутья. Длительность указанных режимов устанавливается местными инструкциями в соответствии с результатами испытания или заводскими данными. При включении масло-водянного охлаждения трансформаторов в первую очередь пускается масляный насос, а затем водяной. Водяной насос пускается при температуре масла +10 гр.

При отключении сначала отключается водяной насос, а затем масляный.

При эксплуатации трансформаторов должны быть предусмотрены меры по предотвращения замораживания маслоохладителей, насосов и водяных магистралей, а также по устранению неплотностей в системе маслоохлаждения согласно местным инструкциям.

Для каждого трансформатора на основе заводских данных определяется максимально допустимая температура верхних слоёв масла. Эта температура для трансформаторов без принудительной циркуляции масла не должна быть больше +95 гр. Превышение температуры масла над температурой окружающего воздуха должно быть не более +60 гр.

Страницы: 1, 2


бесплатно рефераты
НОВОСТИ бесплатно рефераты
бесплатно рефераты
ВХОД бесплатно рефераты
Логин:
Пароль:
регистрация
забыли пароль?

бесплатно рефераты    
бесплатно рефераты
ТЕГИ бесплатно рефераты

Рефераты бесплатно, реферат бесплатно, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.