бесплатно рефераты
 
Главная | Карта сайта
бесплатно рефераты
РАЗДЕЛЫ

бесплатно рефераты
ПАРТНЕРЫ

бесплатно рефераты
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

бесплатно рефераты
ПОИСК
Введите фамилию автора:


Влияние предшественника лей-энкефалина на активность ферментов обмена регуляторных пептидов головного мозга и периферических органов крыс в норме и при эмоционально-болевом стрессе

p align="left">Суммируя вышеизложенные сведения необходимо отметить следующее:

Опиоидные пептиды, их синтетические аналоги (например, даларгин), а также предшественники (лей5-энкефалин-арг6) обладают стресс-протективным свойством.

При воздействии на организм стресс-факторов различной природы наблюдаются значительные изменения в обмене биологически активных пептидов, а также жизнедеятельности организма в целом. Наиболее существенные изменения отмечаются при остром стресс-воздействии.

Важная роль в обмене регуляторных пептидов принадлежит ферментам пептид-гидролазам, которые регулируют уровень биологически активных пептидов при различных функциональных состояниях организма, в том числе и при стрессе. Особое место в ряду этих ферментов занимают основные карбоксипептидазы, которые действуют на конечном этапе процессинга предшественников регуляторных пептидов, а также ферменты, участвующие в инактивации активных форм нейропептидов.

Стресс-протективные вещества различной природы влияют на активность ферментов обмена нейропептидов мозга и периферических тканей стрессированных животных, что свидетельствует об изменениях в метаболизме нейропептидов у этих животных.

В связи с этим, представляет интерес изучение влияния предшественника лей-энкефалина на активность некоторых ферментов обмена нейропептидов головного мозга и периферических тканей животных, подверженных воздействию острого ЭБС. Полученные данные могут способствовать выяснению роли пептидгидролаз в механизмах развития стресс-реакции, а также в реализации эффектов экзогенного предшественника на организм, подверженный стрессу.

ГЛАВА 2. МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ.

2.1. МАТЕРИАЛЫ ИССЛЕДОВАНИЯ.

Объектом исследования служили головной мозг и периферические ткани (надпочечники и семенники) самцов белых беспородных крыс в возрасте 5 месяцев, массой 160-190 г. Животных содержали в стандартных условиях вивариума.

Животных декапитировали, извлекали головной мозг, гипофиз, надпочечники и семенники. Затем ткани помещали в охлажденный физиологический раствор, очищали от оболочек и кровеносных сосудов, высушивали фильтровальной бумагой. Затем выделяли отделы мозга - гипоталамус, средний мозг, гиппокамп, стриатум, большие полушария.

Образцы выделенных отделов мозга и тканей гомогенизировали в стеклянном гомогенизаторе Поттера в 20 мМ натрий ацетатном (NaAc) буфере рН 5,6, содержащем 50 мМ NaCl. Соотношения вес/объем были различны: 1/400- для гипофиза, 1/200- для надпочечников, 1/100- для семенников, 1/50- для отделов мозга. Гомогенаты использовали в качестве источников КПН, ФМСФ-ингибируемой КП и АПФ.

В работе были использованы 4 группы животных. 1 группа - интактные животные. Животным 2 группы вводили раствор лей5-энкефалин-арг6 в дозе 20 мкг/кг соответственно. Животные 3 группы подвергались воздействию острого ЭБС. Животным 4 группы перед воздействием острого ЭБС инстиллировали на конъюнктиву глаза 2 мкл раствора предшественника лей-энкефалина - лей5-энкефалин-арг6 в дозе 20 мкг/кг.

2.2. МЕТОДЫ ИССЛЕДОВАНИЯ.

2.2.1. Схема введения предшественника лей-энкефалина

Введение предшественника лей-энкефалина - тир-гли-гли-фен-лей-арг (лей-энкефалин-арг) осуществлялось способом инстилляции на конъюнктиву глаза (доза 20 мкг/кг веса). Раствор лей-энкефалин-арг наносился на правый глаз крысы, с помощью дозатора с мягким катетером из поливинилхлорида (объем наносимого раствора 2 мкл). Введение предшественника энкефалина осуществлялось утром в одно и то же время.

Раствор лей-энкефалин-арг был приготовлен на физиологическом растворе.

Декапитацию животных производили через 0,5 часа, 4 часа, 24 часа, 72 часа и 10 суток после введения лей-энкефалин-арг, физиологического раствора и через 0,5 часа, 4 часа, 24 часа, 72 часа и 10 суток с начала воздействия острого ЭБС.

2.2.2. Моделирование острого эмоционально-болевого стресса

Для моделирования острого эмоционально-болевого стресса (ЭБС) крыс помещали в клетку с полом из металлической проволоки и встроенной в нее электрической лампочкой и звонком.

Для создания модели стресса крыс в течение 20 мин через каждые 10 секунд в беспорядочном режиме подвергали воздействию одного из трех факторов: вспышке света (лампа накаливания мощностью 100 Вт, расстояние 0,5 м), звука силой 70 Дб, электрокожному раздражению пороговой силы (2 мА). Длительность каждого воздействия составляла 1 сек.

2.2.3. Метод определения активности КПН.

Активность КПН определяли флюориметрически, используя метод Fricker и Snayder c некоторыми модификациями [193]. Активность фермента определяли по освобождению дансил-фен-ала из дансил-фен-ала-арг при рН 5,6, как активность ингибируемая ГЭМЯК - высокоспецифичным ингибитором КПН [193].

Для определения активности КПН смешивали 150 мкл 50 мМ NaAc буфера рН 5,6, содержащего 50 мМ NaCl (проба без ГЭМЯК - контрольная) или 150 мкл раствора, содержащего ГЭМЯК, в том же буфере - опытная проба (концентрация в пробе 1 мкМ) с 50 мкл препарата фермента. Затем пробы преинкубировали 8 мин, при 37 0С, по истечении этого времени прибавляли предварительно нагретый до 37 0С раствор дансил-фен-ала-арг (концентрация 210 мкМ), объемом 50 мкл (конечная концентрация субстрата в пробе 42 мкМ). Реакционную смесь инкубировали 60 мин при t = 37 0С, реакцию останавливали прибавлением 50 мкл 1 н. НСl.

К пробам приливали хлороформ объемом 1,5 мл. и тщательно встряхивали в течение 60 сек. При этом продукты реакции переходят в хлороформную фазу, а субстрат, нерастворимый в хлороформе, остается в водной фазе. Для разделения хлороформной и водной фаз пробы центрифугировали в течение 5 мин при 1000 об/ мин.

Флюоресценцию хлороформной фазы измеряли на флюориметре ФМЦ - 2 в кювете толщиной 1 см при ex = 360 нм и em= 530 нм. В качестве стандартного раствора использовали 1 мкМ раствор дансил-фен-ала в хлороформе.

Активность КПН определяли как разность в накоплении продуктов реакции в пробах, содержащих и не содержащих ГЭМЯК. Активность выражали в нмоль дансил-фен-ала, образовавшегося за 1 мин инкубации в пересчете на 1 мг белка.

2.2.4. Метод определения активности

ФМСФ - ингибируемой карбоксипептидазы.

Активность ФМСФ-ингибируемой карбоксипептидазы определялась флюориметрически, методом, разработанным в лаборатории нейрохимии ПГПУ им. В.Г. Белинского [49]. В качестве субстрата использовали раствор дансил-фен-лей-арг.

В контрольные пробы вносили 150 мкл 50 мМ NaAc буфера, содержащего 50 мМ NaCl рН 5,6 и 50 мкл препарата фермента. Опытные пробы содержали 140 мкл указанного буфера и 50 мкл препарата фермента, ингибитор фенилметилсульфонилфторид (ФМСФ), приготовленный на этаноле, вносился в пробу непосредственно перед преинкубацией в объеме 10 мкл. Пробы преинкубировали 8 мин при 370С, затем вносили 50 мкл 210 мкМ раствора дансил-фен-лей-арг. Далее контрольные и опытные пробы обрабатывали, как описано для КПН.

Активность ФМСФ - ингибируемой карбоксипептидазы определяли как разность в накоплении продуктов реакции в пробах, содержащих и не содержащих ФМСФ и выражали в нмоль дансил-фен-лей, образовавше-гося за 1 мин инкубации в пересчете на 1 мг белка.

2.2.5.Метод определения активности АПФ.

Активность АПФ также определялась флюориметрически. В качестве субстрата использовали дансил-фен-ала-арг, приготовленный на воде. В качестве ингибитора использовали высокоспецифичный ингибитор АПФ - каптоприл.

Контрольные пробы содержали 100 мкл 200 мМ трис НСl рН 7,6 и 100 мкл препарата фермента. В опытные пробы вносили 90 мкл указанного буфера, 10 мкл 25 мМ каптоприла, приготовленного на воде и 100 мкл гомогената. Пробы преинкубировали в течение 8 мин при 370С, затем в каждую пробу прибавляли предварительно нагретый до 370С раствор субстрата дансил-фен-ала-арг объемом 50 мкл. Реакционные смеси инкубировали в течение 30 мин при 37 0С, реакцию останавливали прибавлением 50 мкл 1н раствора НСl. Далее пробы обрабатывали по схеме, приведенной для КПН.

Активность фермента определяли как разницу в приросте флюорисценции в пробах содержащих и не содержащих ингибитор АПФ - каптоприл и выражали в нмоль дансил-фен-ала, образовавшегося за 1 мин инкубации в пересчете на 1 мг белка.

2.2.6. Методы определения активности КПН, ФМСФ-ингибируемой КП и АПФ in vitro

В опытах in vitro, влияние лей-энкефалин-арг на активность ферментов изучали в гомогенатах гипофиза, надпочечников и больших полушарий. Раствор лей-энкефалин-арг добавляли непосредственно в среду инкубации, концентрация исследуемого предшественника составляла 2,4 мМ. Все последующие операции по определению активности ферментов проводили по схеме, описанной выше.

2.2.7. Метод определения содержания белка

Содержание белка в пробах определяли по методу Лоури [65]. Метод основан на способности белка окрашиваться раствором Фолина. В качестве стандарта для построения калибровочной кривой использовали БСА.

2.2.8.Статистическая обработка результатов исследования.

Результаты подвергали статистической обработке с использованием t-критерия Стьюдента, различия считали достоверными при p<0,05 [98].

ГЛАВА 3. РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ.

3.1. РЕГИОНАЛЬНОЕ И ТКАНЕВОЕ РАСПРЕДЕЛЕНИЕ АКТИВНОСТИ КПН, ФМСФ-ИНГИБИРУЕМОЙ КП И АПФ У САМЦОВ КРЫС.

Известно, что уровень биологически активных пептидов регулируется пептидгидролазами, которые отщепляют остатки аргинина и лизина с С-конца пропептидов. Неоднородное распределение нейропептидов, а также разница в течение процессинга регуляторных пептидов в тканях (нервной и периферической) [14, 212, 271] указывают на необходимость изучения тканевого и регионального распределения активности ферментов их обмена. Особый интерес вызывает изучение распределения активности ФМСФ-ингибируемой КП - фермента, биологическая роль которого в полной мере не определена. Важным представляется, также, сравнение уровня активности этого фермента с активностью КПН и АПФ - ферментов, тканевое и региональное распределение и биологическая роль которых известны.

Результаты исследования распределения активности КПН, ФМСФ-ингибируемой КП и АПФ в отделах мозга и некоторых периферических тканях представлены в таблице 1 (приложение).

3.1.1.Распределение активности КПН.

Максимальная активность КПН обнаружена в гипофизе - отделе, синтезирующем группу биологически активных пептидов. В отделах мозга активность КПН примерно в 6-7 раз ниже, чем в гипофизе. По убыванию активности КПН отделы мозга можно расположить следующим образом: средний мозг, гипоталамус, гиппокамп. В этих регионах мозга секреторные пептиды не синтезируются, однако данные отделы характеризуются достаточно высоким их содержанием [221]. Далее по убыванию активности КПН следуют стриатум и большие полушария, уровень активности фермента, в которых примерно одинаков. В семенниках и надпочечниках активность КПН на порядок ниже, чем в отделах мозга.

Таким образом, высокая активность КПН обнаружена в отделах мозга, связанных с образованием, секрецией или высоким содержанием регуляторных пептидов [221]. Полученные данные хорошо согласуются с литературными о распределении активности КПН [39, 40, 193, 194].

Следует указать на то, что в наших исследованиях активность КПН определялась как активность, ингибируемая ГЭМЯК, являющейся высокоспецифичным ингибитором КПН, в то время как другие авторы использовали данные по активности КПН, стимулируемой ионами Со2+ [188, 193, 194], что предполагает несколько завышенные результаты, не всегда соответствующие действительному уровню активности этого фермента в мозге и тканях. В связи с этим значения активности КПН в наших исследованиях несколько ниже значений, имеющихся в литературе.

3.1.2. Распределение активности АПФ.

Максимальная активность АПФ у интактных животных обнаружена в гипофизе. В стриатуме активность АПФ примерно в 3 раза ниже. В других отделах мозга и надпочечниках активность фермента находится на уровне предела чувствительности метода. Высокая активность АПФ обнаружена также в семенниках.

Таким образом, полученные данные хорошо согласуются с распределением регуляторных пептидов в мозге и периферических тканях крыс, что подтверждает участие данного фермента в процессах модификации белков и пептидов в этих регионах.

3.1.3.Распределение активности ФМСФ-ингибируемой КП

Полученные данные свидетельствуют, что активность ФМСФ-ингибируемой КП обнаружена во всех исследуемых регионах мозга и периферических тканях крыс (табл.1). Наибольшая активность фермента показана в надпочечниках, в гипофизе активность составляет 74% от активности ФМСФ-ингибируемой КП в надпочечниках, в других отделах активность примерно одинакова и составляет 23% от активности фермента в гипофизе.

Данные наших исследований о сравнительно высокой активности ФМСФ-ингибируемой КП в надпочечниках и гипофизе, отделах, характеризующихся высоким содержанием нейропептидов, а также их интенсивным метаболизмом [14, 34], указывают на вероятность вовлечения этого фермента в обмен биологически активных пептидов.

Сравнение регионального распределения КПН и ФМСФ-ингибируемой КП показывает некоторое сходство, так максимальный уровень активности этих ферментов отмечен в гипофизе. Однако если активность ФМСФ-ингибируемой КП характеризуется высокими показателями в надпочечниках, где синтезируется большое количество энкефалинов, то для КПН эти значения на порядок ниже. Кроме того, различия в уровне активности ФМСФ-ингибируемой КП, обнаруженные между гипофизом и отделами мозга, менее значительны по сравнению с таковыми для КПН. Полученные данные позволяют выдвинуть предположение о некоторых различиях в биологической функции этих ферментов. Вероятно, что КПН и ФМСФ-ингибируемая КП участвуют в обмене разных регуляторных пептидов или в процессах модификации одних и тех же нейропептидов, но на различных этапах их обмена.

3.2. ИССЛЕДОВАНИЕ ВЛИЯНИЯ ОСТРОГО ЭМОЦИОНАЛЬНО-БОЛЕВОГО СТРЕССА НА АКТИВНОСТЬ КПН, ФМСФ-ИНГИБИРУЕМОЙ КП И АПФ

Известно, что воздействие стресс-факторов вызывает значительные изменения в функционировании многих систем организма, таких как гипоталамо-гипофизарно-надпочечниковая (ГГНС), симпато-адреналовая (САС) и др. [5, 21, 76, 270]. Неотъемлемой частью развивающихся гормонально-медиаторных изменений при стрессе является активация пептидэргических систем головного мозга и периферических тканей [8, 91, 111, 137]. Одной из наиболее многофункциональных регуляторных систем, действующих в условиях стресса и адаптации, является система эндогенных опиоидных пептидов [116, 118, 242]. Обнаружено, в частности, что стресс-воздействие является стимулирующим фактором, приводящим к генерализованной активации стресс-лимитирующей энкефалинэргической системы [79, 100, 101]. Причем, наиболее выраженное повышение адаптивных способностей организма достигается при кратковременном остром воздействии стресс-факторов [144, 145]. В связи с этим, непродолжительное острое стрессирование рассматривается как физиологически адекватный способ изучения свойств эндогенных регуляторных пептидов при экстремальных воздействиях. Кроме того известно, что сильные раздражители, такие как электрический ток, резкий звук, вызывают повышение проницаемости ГЭБ для эндогенных биологически активных веществ, синтезируемых в ответ на стресс-воздействие [88, 97].

Практически не изучены ферментативные механизмы, обеспечивающие обмен регуляторных пептидов при остром ЭБС. Известно, что уровень нейропептидов при различных физиологических и патологических состояниях, а, следовательно, и степень реализации ответной реакции организма на оказанное воздействие, зависят от проявления функциональной активности ферментов их обмена. Участие КПН и АПФ в образовании и/или деградации энкефалинов, пептидных гормонов гипофиза и других регуляторных пептидов при стрессе сегодня не вызывают сомнений. Что же касается включения в процессы обмена нейропептидов ФМСФ-ингибируемой КП, то, на данный момент, это является только предположением. В связи с этим, для более детального определения биологической роли этого малоизученного фермента, особый интерес представляет сравнение изменений активности ФМСФ-ингибируемой КП с активностью КПН и АПФ при остром эмоционально-болевом стрессе (ЭБС). Большой интерес в связи с данными о длительном и фазном выбросе нейропептидов при воздействии стресс-факторов [134, 135, 144], вызывает изучение динамики изменения активности исследуемых ферментов.

Проведено исследование влияния острого ЭБС на активность КПН, ФМСФ-ингибируемой КП и АПФ в головном мозге, надпочечниках и семенниках крыс через 0,5 часа, 4 часа, 24 часа, 72 часа и 10 суток после воздействия острого ЭБС. Сравнение активности КПН, ФМСФ-ингибируемой КП и АПФ проводилось относительно интактной группы животных (норма). Результаты данной серии исследования представлены в таблице 2 (приложение).

3.2.1. Активность КПН в головном мозге, надпочечниках и семенниках крыс при воздействии острого эмоционально-болевого стресса

Обнаружено, что острый ЭБС вызывал статистически достоверное изменение активности КПН во всех исследованных отделах мозга и гипофизе (табл.2, рис.1). Активность КПН в надпочечниках и семенниках крыс при воздействии острого ЭБС практически не изменялась. Показано, что изменения активности изучаемого фермента в отделах мозга и гипофизе отличались по динамике, направленности и степени выраженности. Наиболее выраженное повышение активности КПН обнаружено в гипофизе и стриатуме. В гиппокампе, среднем мозге и надпочечниках после воздействия ЭБС отмечено снижение активности КПН.

Активность КПН в гипофизе через 0,5, 4, 24 и 72 часа была выше нормы. Наиболее существенное повышение активности фермента отмечено через 0,5 и 72 часа после воздействия острого ЭБС, активность КПН превышала показатели интактных животных на 43%, p<0,01 и 54%, p<0,001, соответственно. Через 10 суток статистически достоверных отклонений от нормы не обнаружено

В стриатуме активность фермента повышалась постепенно. Максимальное повышение активности фермента отмечено через 24 часа после начала воздействия стресс-фактора и отличалось от контрольного уровня на 44%, p<0,01. Через 72 часа активность КПН составляла 133%, p<0,05, от показателей активности фермента у интактных животных. Через 10 суток достоверных изменений не обнаружено.

В больших полушариях острый ЭБС вызывал статистически значимое увеличение активности КПН через 72 часа (+33%, p<0,05) после начала эксперимента.

Через 4 часа после воздействия острого ЭБС активность КПН в среднем мозге и гиппокампе была ниже показателей активности интактных животных на 18%, p<0,05 и 32%, p<0,01, соответственно.

В надпочечниках активность КПН также снижена по сравнению с показателями активности животных, не подвергавшихся воздействию ЭБС через 4 и 24 часа на 40%, p<0,05.

Таким образом, наиболее выраженные изменения активности КПН при остром ЭБС наблюдались в гипофизе. Полученные данные согласуются с данными об увеличении синтеза и секреции гормонов гипофиза пептидной природы при стрессе [232], а также с данными о повышении активности КПН при других видах стресса [42, 64]. Высокая активность фермента обнаружена также в стриатуме - отделе, где синтезируются такие нейропептиды, как энкефалины, вещество Р, т.е. биологически активные пептиды обладающие выраженным антистрессорным действием, [134, 153].

3.2.2. Активность ФМСФ-ингибируемой КП в головном мозге, надпочечниках и семенниках крыс при воздействии острого эмоционально-болевого стресса

Влияние ЭБС на активность ФМСФ-ингибируемой КП наблюдается практически во всех отделах мозга, гипофизе, надпочечниках и семенниках, однако динамика изменения активности отличается от таковой для КПН (табл.2, рис.2).

Так во всех отделах мозга после острого ЭБС активность ФМСФ-ингибируемой КП была несколько ниже показателей активности интактных животных через 0,5, 4 и 24 часа при этом статистически достоверных отличий от нормы обнаружено не было. Через 72 часа после начала воздействия активность ФМСФ-ингибируемой КП повышалась и составляла в гипофизе - 123%, p<0,01, в среднем мозге - 119%, p<0,05, в гипоталамусе - 121%, p<0,01, в гиппокампе - 127%, p<0,01, в больших полушариях - 157%, p<0,001 от активности фермента в норме (рис.2).

В отличие от КПН, наиболее выраженные изменения активности ФМСФ-ингибируемой КП по сравнению с группой интактных животных отмечены в надпочечниках. Так через 4 и 24 часа после острого ЭБС активность фермента была ниже показателей нормы на 12 (p<0,05) и 21 (p<0,01) %, соответственно. Затем активность ФМСФ-ингибируемой КП повышалась и через 72 часа превышала показатели активности интактных животных на 57%, p<0,01.

В семенниках статистически достоверные изменения в активности ФМСФ-ингибируемой КП по сравнению с интактной группой животных обнаружены только через 0,5 часа. Активность фермента в этом регионе превышала показатели группы животных, не подвергавшихся воздействию стресса, на 50%.

Таким образом, при воздействии острого ЭБС статистически достоверные отклонения активности от нормы, во всех исследуемых отделах мозга и надпочечниках, отмечены только через 72 часа после начала воздействия. В отличие от КПН максимальное повышение активности фермента обнаружено в больших полушариях и надпочечниках. Полученные сведения могут свидетельствовать о различии в биологической функции КПН и ФМСФ-ингибируемой КП при стрессе.

3.2.3. Активность АПФ в головном мозге, надпочечниках и семенниках крыс при воздействии острого эмоционально-болевого стресса

Результаты определения активности АПФ в головном мозге, надпочечниках и семенниках при воздействии острого ЭБС приведены в табл.2 и на рис.3.

Полученные данные показывают, что при воздействии острого ЭБС статистически достоверных изменений активности АПФ в головном мозге, гипофизе и надпочечниках не обнаружено. Острый ЭБС вызывал изменение активности АПФ в семенниках.

Активность фермента через 0,5 часа после начала стресс-воздействия была выше нормы на 51%, p<0,05. Через 4 часа активность снижалась и до 72 часов оставалась приблизительно на одном уровне. Показатели активности при этом были ниже соответствующих показателей группы интактных животных на 11-23%. Через 10 суток после острого ЭБС достоверных отличий от нормы не обнаружено.

В среднем мозге, гиппокампе, гипоталамусе и больших полушариях активность АПФ была ниже уровня чувствительности метода определения (табл.2).

В гипофизе и стриатуме через 4 часа после воздействия острого ЭБС обнаружено достоверное понижение активности АПФ. Активность фермента в этих отделах была ниже соответствующих показателей активности животных, не подвергавшихся воздействию острого ЭБС на 28%, p<0,01 и 32%, p<0,01, соответственно.

Таким образом, обнаружено, что острый ЭБС вызывал понижение активности АПФ в гипофизе и стриатуме через 4 часа. В семенниках через 0,5 часа после воздействия обнаружено повышение, а 4 и 24 часа снижение активности фермента. В других отделах мозга и надпочечниках активность фермента характеризуется очень низкими показателями.

Полученные данные показывают, что при воздействии острого ЭБС активность КПН изменялась во всех исследуемых регионах мозга и гипофизе, активность ФМСФ-ингибируемой КП во всех отделах мозга (исключение стриатум), гипофизе, надпочечниках и семенниках и активность АПФ - в гипофизе, стриатуме и семенниках. Обнаружено, что острый ЭБС вызывал различные по динамике, степени выраженности и направленности изменения активности КПН, ФМСФ-ингибируемой КП и АПФ. Наиболее выраженное повышение активности КПН отмечено в гипофизе - через 0,5 и 72 часа и стриатуме - через 24 часа. В среднем мозге и гиппокампе показано снижение активности фермента через 4 часа после воздействия стресса. В отличие от КПН наиболее выраженное повышение активности ФМСФ-ингибируемой КП в головном мозге, гипофизе и надпочечниках отмечалось через 72 часа после начала стресс-воздействия. Острый ЭБС вызывал разнонаправленные изменения активности АПФ в семенниках. Активность фермента в гипофизе и стриатуме через 4 часа после воздействия снижалась. В других отделах мозга и надпочечниках изменений активности АПФ не обнаружено.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10


бесплатно рефераты
НОВОСТИ бесплатно рефераты
бесплатно рефераты
ВХОД бесплатно рефераты
Логин:
Пароль:
регистрация
забыли пароль?

бесплатно рефераты    
бесплатно рефераты
ТЕГИ бесплатно рефераты

Рефераты бесплатно, реферат бесплатно, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.