бесплатно рефераты
 
Главная | Карта сайта
бесплатно рефераты
РАЗДЕЛЫ

бесплатно рефераты
ПАРТНЕРЫ

бесплатно рефераты
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

бесплатно рефераты
ПОИСК
Введите фамилию автора:


Естествознание XX века

p align="left">Звезды и туманности в пределах Галактики движутся довольно сложным образом. Прежде всего они участвуют во вращении Галактики вокруг оси со скоростью примерно 250 км/сек. За время своего существования Солнце совершило примерно 25 оборотов вокруг оси вращения.

Уже несколько десятилетий астрономы настойчиво изучают другие звездные системы, в той или иной степени сходные с нашей. Этот раздел называется «внегалактическая астрономия». Он играет едва ли не ведущую роль в астрономии. Понемногу стали вырисовываться грандиозные контуры Метагалактики, в состав которой наша звездная система входит как малая частица. Мы можем определить Метагалактику как совокупность звездных систем -- галактик, движущихся в огромных пространствах наблюдаемой нами Вселенной. Ближайшие к нашей звездной системе галактики -- знаменитые Магеллановы Облака. Расстояние до Магеллановых Облаков «всего лишь» около 200 тыс. световых лет, что вполне сравнимо с общей протяженностью Галактики. Другая «близкая» к нам галактика -- это туманность в созвездии Андромеды. В большие телескопы наблюдается огромное количество галактик.

Изучение спектров галактик позволило сделать одно открытие фундаментальной важности. Все галактики удаляются от нас, причем скорость этого «разлета» по мере удаления галактик растет. Причины расширения системы являются предметом современной космологии.

Современная космология начала складываться в 20-е годы нашего века на основе созданной Эйнштейном общей теории относительности. Из этой теории следует так называемая кривизна пространства и связь кривизны с плотностью массы (энергии). Космология, основанная на этих постулатах -- релятивистская. Еще в 1922 году советский математик и геофизик А.А. Фридман нашел решение уравнений общей теории относительной для замкнутой расширяющейся Вселенной. Он установил, что искривленное пространство не может быть стационарным: оно должно или расширяться, или сжиматься.

Уравнения Фридмана теоретически обосновали нестационарность Вселенной. На этот вывод ученые не обращали внимание вплоть до открытия американским астроном Эдвином Хабблом (1889-1953) в 1929 году так называемого «красного смещения». Дело в том, что еще в XIX веке австрийский физик и астроном Кристиан Доплер обнаружил, что если источник света приближается, спектральные линии смещаются в сторону более коротких волн, если удаляется -- в сторону более длинных (красных) волн. Это явление было названо эффектом Доплера. Э. Хаббл открыл «красное смещение» для всех далеких источников света. Красное смещение оказалось пропорциональным расстоянию до источника, что подтверждало гипотезу о расширении видимой части Вселенной. Тем самым теоретически построенные Фридманом модели нестационарной Вселенной были обоснованы результатами наблюдений. Уравнения Фридмана обеспечили математический фундамент большинству современных космологических теорий.

Существует два различных типа моделей Фридмана.

Если средняя плотность материи во Вселенной меньше некоторой критической величины или равна ей, то тогда Вселенная должна быть пространственно бесконечной. В этом случае современное расширение Вселенной будет продолжаться всегда.

В то же время, если плотность материи во Вселенной больше той же критической величины, тогда гравитационное поле, порожденное материей, искривляет вселенную, замыкая ее на себя; Вселенная в этом случае конечна, хотя и не ограничена, вроде поверхности сферы. Это означает, что если мы отправимся в путешествие по прямой линии, мы не сможем добраться до какого-то угла Вселенной, а просто вернемся туда, откуда начали свой путь. Гравитационные поля достаточно сильны для того, чтобы в конце концов остановить расширение Вселенной, так что рано или поздно она начнет снова сжиматься к состоянию бесконечно большой плотности.

В 1965 году американские ученые астрономы А. Пензиас и Р. Вилсон сделали с помощью радиотелескопа -- устройства, предназначенного для приема радиоизлучения космических объектов, -- открытие большой важности. Они установили, что во Вселенной имеется так называемое фоновое радиоизлучение, названное советским ученым И.С. Шкловским реликтовым. Реликтовое радиоизлучение образовалось на раннем этапе существования Вселенной, когда ей было всего около 3 млн лет.

Два экспериментально установленных положения: -- расширение Вселенной и реликтовое излучение -- являются убедительными доводами в пользу так называемой теории «большого взрыва», ставшей теперь общепризнанной.

До утверждения этой теории существовала теория стационарного состояния, согласно которой Вселенная всегда была почти такой, какой мы видим ее сейчас. В XVIII, XIX и даже в первой половине XX века в астрономии господствовал взгляд на Вселенную как на нечто статическое, не изменяющееся. Изучались движения планет и комет, химический состав звездных атмосфер и т. д. Но истинная картина меняющейся, богатой «скачками» и взрывами Вселенной стала ясной астрономам только во второй половине XX века.

Основываясь на теории расширяющейся Вселенной, оказалось возможным проследить развитие Вселенной в «обратную сторону», т. е. попробовать вернуться возможно дальше назад. Хотя осуществить такую реконструкцию было далеко не просто, но все же она оказалась успешной.

По современным представлениям, вначале был взрыв. Не такой взрыв, который знаком нам на Земле и который начинается из определенного места и затем распространяется, захватывая все больше и больше пространства, а взрыв, который произошел одновременно везде, заполнив с самого начала все пространство, причем каждая частица материи устремилась прочь от любой другой частицы.

Всего лишь через одну сотую секунды после взрыва Вселенная имела температуру порядка 100 000 миллионов К (10й К). При такой высокой температуре (выше температуры центра самой горячей звезды) молекулы, атомы и даже ядра атомов существовать не могут. Вещество Вселенной пребывало в виде элементарных частиц, среди которых преобладали электроны, позитроны, нейтрино, фотоны, а также в относительно малом количестве протоны и нейтроны. Плотность вещества Вселенной спустя 0,01 с после взрыва, несмотря на очень высокую температуру, была огромной -- в 4 000 миллионов раз больше, чем у воды.

В конце первых трех минут после взрыва температура вещества Вселенной, непрерывно снижаясь, достигла 1 млрд. градусов (109 К). Плотность вещества также снизилась, но еще была близкой к плотности воды. При этой, хотя и очень высокой, температуре начали образовываться ядра атомов, в частности ядра тяжелого водорода (дейтерия) и ядра гелия. Однако вещество Вселенной в конце первых трех минут состояло в основном из фотонов, нейтрино и антинейтрино. Только по истечении нескольких сотен тысяч лет начали образовываться атомы, главным образом водорода и гелия. Силы гравитации превращали газ в сгустки, ставшие материалом для возникновения галактик и звезд.

Как следует из сказанного, за последние примерно 50 лет достигнуты значительные результаты в изучении звезд, галактик и даже Вселенной и их эволюции.

Один из главных выводов, к которому пришли астрономия и астрофизика, состоит в том, что Вселенная находится в состоянии непрерывной эволюции. Остановимся на эволюции звезд. Звезды образуются из газопылевой межзвездной среды, главным образом из водорода и гелия, в результате действия сил гравитации. Проследить эволюцию звезд помог факт, что во Вселенной существуют звезды всех «возрастов». Более того, образование новых звезд происходит и теперь.

Под действием гравитационных сил звезда сжимается и становится все более горячей. Когда температура достигает приблизительно 10 млн К, внутри звезды начинается термоядерная реакция. Для звезды начинается новая стадия эволюции. Сопротивление силам гравитации будет оказывать растущее давление внутри звезды, возникшее вследствие протекания термоядерной реакции. В некоторый момент будет достигнуто равновесие. В этом состоянии звезда может существовать долгое время, излучая в пространство огромную энергию. Например, Солнце в этом состоянии будет существовать 13 млрд. лет, из которых истекли 5 млрд.

Рано или поздно наступает такой момент, когда водород, необходимый для термоядерной реакции, будет израсходован. Температура и давление внутри звезды начнут снижаться, гравитационные силы начнут преобладать. Наступает новый этап эволюции звезды. Ее ядро, состоящее теперь из гелия (продукт реакции), начинает сжижаться, образуя плоскую горячую область. Но термоядерная реакция будет еще продолжаться на периферии, где еще сохранился водород. В это время, как следует из расчетов, размер звезды и ее светимость будет увеличиваться. Звезда превратится в так называемый красный гигант.

Температура гелиевого ядра достигнет 100-150 млн. К, начнется новая ядерная реакция превращения гелия в углерод.

Дальнейшая эволюция звезды зависит от ее массы. Если масса звезды меньше 1,2 массы Солнца, то после того, как завершится термоядерная реакция в периферийных слоях звезды (весь водород «выгорит») и закончится ядерная реакция в ядре звезды (весь гелий превратится в углерод), внешние слои отделятся и рассеются в пространстве, а оставшиеся внутренние слои звезды, очень горячие и плотные, будут представлять собой так называемый белый карлик. Постепенно остывая, они все меньше и меньше излучают, переходя в невидимые черные карлики. Это мертвые, холодные звезды очень большой плотности, в миллионы раз плотнее воды. Их размеры меньше размеров земного шара, хотя массы сравнимы с солнечной. Процесс остывания белых карликов длится много сотен миллионов лет. Так кончает свое существование большинство звезд.

Если же масса звезды превышает 1,2 массы Солнца, то ее дальнейшая эволюция имеет другой характер. После прекращения термоядерной реакции в ядре звезды огромные гравитационные силы приводят к так называемому гравитационному коллапсу -- катастрофически быстрому сжатию, в результате которого центральная область звезды становится сверхплотной нейтронной звездой (ее плотность может достигать 1015 г/см3, т. е. превышать плотность атомных ядер), а периферические сферы звезды сбрасываются, -- это явление может наблюдаться как огромная вспышка, именуемая вспышкой сверхновой звезды.

Если же центральная область звезды будет сжата до величины гравитационного радиуса (для Солнца, например, эта величина равна лишь 3 км, а для Земли -- 0,9 см), то образуется так называемая черная дыра -- сфера, в которой поле тяготения столь велико, что никакое излучение или частицы не могут выйти из этой сферы.

В 1967 году были открыты пульсары -- космические тела, являющиеся источниками радиоизлучения. Это излучение носит импульсный характер, причем импульсы повторяются через очень короткий промежуток времени: от долей секунды до нескольких секунд. Пульсары относят к разряду нейтронных звезд.

В 1963 году были открыты новые астрономические объекты, находящиеся вне пределов нашей галактики и получившие название квазаров. Квазары удаляются от нашей Галактики с огромными скоростями -- 100-200 тыс. км/с. По сумме всех характеристик квазаров предполагается, что они представляют собой ядра особо удаленных от нас галактик, в которых происходят поражающие своей мощью процессы, происхождение которых еще недостаточно ясно.

В заключение необходимо выделить основные проблемы современной физики. Об этих проблемах говорит академик В.Л. Гинзбург в своей статье «О перспективах развития физики и астрофизики в конце XX в.».

Макрофизика

Управляемый термоядерный синтез.

Высокотемпературная сверхпроводимость.

Новые вещества (проблема создания металлического водорода и некоторых других «необычных» веществ).

Поведение вещества в сверхсильных магнитных полях.

Изучение очень больших молекул. Жидкие кристаллы.

Разеры, гразеры и лазеры новых типов.

Нелинейные явления. Солитоны.

Сверхтяжелые элементы.

Микрофизика

Кварки и глюоны. Квантовая хромодинамика.

Единая теория слабого и электромагнитного взаимодействия.

«Великое объединение». Распад протона. Масса нейтрино. Суперобъединение.

Астрофизика

Экспериментальная проверка и граница применимости общей теории относительности.

Гравитационные волны.

Космологическая проблема. Связь космологии с физикой высоких энергий.

Нейтронные звезды и пульсары. Физика «черных дыр».

Квазары и ядра галактик. Образование галактик.

Происхождение космических лучей и космического гамма- и рентгеновского излучения.

Нейтринная астрономия.

Электроника

Ядерная физика и астрофизика достигли в XX веке огромных успехов в изучении окружающего мира, но наиболее значительные практические успехи были достигнуты в области электроники.

Электронику можно определить как науку о взаимодействии электронов с электромагнитными полями и о методах создания электронных приборов и устройств (вакуумных, газозарядных, полупроводниковых), используемых для передачи, обработки и хранения информации. Развитие электроники начинается в конце XIX -- начале XX века. Электромагнитные волны, как известно, были изучены Герцем в 1886 г. Теория Максвелла объяснила их природу и свойства. В конце прошлого века электромагнитные волны были использованы для беспроволочной связи. Впервые это сделал русский инженер А.С. Попов в 1895 году. Примерно через год этот опыт повторил итальянский техник и предприниматель Г. Маркони. Он первым попытался послать радиосигналы через Атлантический океан, которые действительно были приняты. Это означало, что в атмосфере должно существовать какое-то подобие зеркала, отражающего радиоволны обратно на землю.

В 20-х годах Э. Эпплтон занялся изучением этого вопроса. Так была открыта ионосфера. Открытие Эпплтона легло в основу радиолокационного прибора, созданного в ходе второй мировой войны.

Использование коротких волн давало возможность направления их по точно определенным лучам, что было использовано в радиолокации. Непосредственным стимулом для ее развития явилась необходимость предупреждения воздушного нападения во время второй мировой войны. В дальнейшем радиолокация применялась для нахождения пути, съемки карт с воздуха, управления полетом самолетов, а также полетом снарядов и ракет. Методы радиолокации были использованы также для целей астрономии, в частности, для проверки расстояния до Луны. Возник также новый вид астрономии -- радиоастрономия.

Настоящую революцию в области связи вызвало создание электронной лампы, которая делает возможным усиление и регенерацию волн. Электронные лампы нашли широкое применение главным образом в радиоаппаратуре и ЭВМ первого поколения.

Для целей войны было необходимо создать аппараты, которые бы могли выполнять сложные расчеты траектории снарядов и ракет. Это позволило к концу войны создать первые электронные счетные машины.

Предпосылки для создания быстродействующих счетных машин сложились к 40-м годам нашего века. К этому времени был создан соответствующий теоретический базис. В конце 30-х годов английский математик А. Тьюринг показал, что различные проблемы могут быть решены с помощью машин, если эти проблемы или задачи могут быть выражены посредством конечного числа операций.

В 1940 году американский математик Норберт Виннер предложил использовать в вычислительных машинах не десятичную систему счисления, а двоичную. В этом случае любое число можно записать только с помощью двух цифр -- 1 и 0. Двоичная система счисления и бинарная логика, разработанная Джоржем Булем в XIX веке, играют ключевую роль в вычислительной технике.

В конце 30-х годов в вычислительных машинах начинают применяться электронные элементы, что позволило повысить быстродействие машин на три порядка. Первая ЭВМ, использующая элементы на электровакуумных триодах, была создана в Пенсильванском университете в 1945 году под руководством Дж. Маучли.

Ее назвали ЭНИАК. Первая ЭВМ была очень громоздкой. Она состояла из 18 тысяч электронных ламп, 1500 реле и занимала зал длиной 30 метров. За одну секунду этот гигант мог складывать или вычитать пять тысяч чисел. Но машина часто простаивала из-за того, что перегорали лампы, выходили из строя реле, много времени тратилось на подготовительные работы. Операторы, обслуживающие ЭНИАК, отставали от него.

В 1946 году американский математик и физик Джон фон Нейман выдвинул и обосновал принципы создания новых ЭВМ. В них предполагался переход на двоичную систему счисления, а также ввод и хранение программы в памяти ЭВМ аналогично данным. Идеи Неймана и постройка под его руководством новой ЭВМ -- ЭДВАК -- оказали существенное влияние на дальнейшее развитие вычислительной техники.

Прогресс вычислительной техники в 40-50-е годы был обусловлен появлением ряда работ по численному анализу. В 1944 году была опубликована книга фон Неймана и О. Моргенштерна «Теория игр и оптимальное поведение», а в 1948 году вышла книга Н. Виннера «Кибернетика, или Управление и связь в животном и машине». Эти работы оказались очень продуктивными для дальнейшего развития ЭВМ. На основе идей Виннера удалось создать общую теорию информации и связи, применимую в самых различных областях -- от физики до биологии и языкознания. В развитии теории информации сыграли важную роль работы советских ученых А.Н. Колмогорова и А.Я. Хинчина.

В СССР разработка первой отечественной ЭВМ с запоминаемой программой началась в 1947 году в Киеве под руководством академика С.Я. Лебедева (1902-1974). Серийное производство ЭВМ началось практически одновременно в СССР и США в 1951-1952 годах.

Парк ЭВМ увеличивался очень высокими темпами. Если в 1952-1953 годах их было несколько десятков, то в 1965 году во всем мире использовалось уже около 40 тыс. ЭВМ, а в 1970 году -- свыше 100 тыс.

В развитии вычислительной техники можно выделить несколько этапов («поколения» ЭВМ).

К первому поколению ЭВМ (1950-1958 гг.) относятся ламповые вычислительные машины. Они были громоздки и малонадежны, отличались высокой стоимостью и большим энергопотреблением, работали в однопрограммном режиме, обладали низким быстродействием.

Ко второму поколению относятся полупроводниковые ЭВМ (1959-1967 гг.), в которых электронные лампы были заменены транзисторами. В ЭВМ второго поколения были применены новые принципы организации и работы машины: совмещение операций ввода и вывода данных с вычислениями на центральном процессоре, повышение быстродействия процессора за счет параллельного во времени выполнения частей 1-2 команд.

Параллельно с техническим совершенствованием ЭВМ шла работа по созданию универсальных языков, пригодных для широкого класса машин. В 60-х годах были разработаны и получили широкое распространение универсальные языки АЛГОЛ, КОБОЛ, ФОРТРАН и др.

В середине 60-х годов появились так называемые интегральные схемы: на миниатюрной монокристаллической пластинке полупроводника размещалось значительное количество логических элементов.

К третьему поколению (середина 60-х годов) относятся машины, построенные на интегральных схемах. Это программно-совместимые ЭВМ, отличающиеся большой производительностью, максимальным объемом оперативной памяти, составом периферийного оборудования.

Новый этап использования ЭВМ связан с появлением быстродействующих и весьма емких запоминающих устройств. Одновременно была решена задача быстрого поиска данных. При создании и эксплуатации ЭВМ первых двух поколений практически не решался вопрос обеспечения удаленного доступа к ЭВМ. Появление баз данных и резкое повышение мощности вычислительных ресурсов поставили на повестку дня задачу обеспечения одновременного доступа к ним различных потребителей, находящихся географически в самых разных точках. Для потребителя это означало возможность обращения к любой ЭВМ и соответствующей базе данных независимо от места расположения этой ЭВМ. Новые возможности хранения, быстрого поиска и передачи информации означают революцию в системах накопления и доступа к освоенным знаниям. Наступает важный в жизни человечества этап «безбумажной информатики»: информация поступает к специалистам прямо на рабочее место -- экран дисплея.

Созданные в начале 60-х годов первые образцы микросхем содержали тысячи активных элементов (диодов, транзисторов) в одном кубическом сантиметре. С каждым последующим десятилетием количество элементов увеличивалось примерно в 10 раз.

В начале 80-х годов стали выпускать микросхемы, содержащие до 100 тысяч элементов в одном кубическом сантиметре, а во второй половине 80-х годов это число перевалило за миллион. Вслед за интегральными схемами (ИС) появились большие интегральные схемы (БИС) и сверхбольшие интегральные схемы (СБИС).

Особенно активно интегральные схемы начала разрабатывать и производить американская фирма «Интел». В 1971 году «Интел» создает семейство микропроцессоров 4004 с четырехразрядными порциями информации. Процессор стоил 200 долларов, в нем 2,3 тыс. транзисторов. В 1976 г. создан 8-разрядный микропроцессор 8080. Было предложено создать на его основе персональный компьютер.

1985 год -- 32-разрядный процессор 1386, в котором 275 тыс. транзисторов, быстродействие -- 5 млн операций в секунду.

1989 год -- микропроцессор I486; содержит 1,2 млн транзисторов, быстродействие -- 20 MIPS.

1993 год -- микропроцессор Pentium; 3,1 млн транзисторов; производительность 90 MIPS.

1995 год -- Pentium-Pro, 5,5 млн транзисторов, производительность 300 MIPS.

Этот фантастический прогресс -- результат глубоких исследований и миллиардных капвложений.

Один из путей развития электроники -- создание микросхем на основе белковых структур. Вот первые результаты: японская фирма «Сантори ЛТД» создала первые образцы так называемых биочипов -- микросхем, выполняющих функции электронной памяти на основе искусственно выращенных белковых структур. По оценкам японских специалистов в ближайшем будущем емкость памяти микросхем на биочипах превысит емкость памяти микросхем, выполненных на полупроводниковых кристаллах, в 109 (в миллиард) раз.

Сравнивая современный персональный компьютер с громоздкой ЭВМ первого поколения, мы видим, как высоко мы поднялись. Сравнивая тот же компьютер с мозгом, мы понимаем, что до уровня совершенства, которого путем длительной эволюции достигла природа, нам пока еще весьма далеко.

Нейронные сети чрезвычайно компактны: 1011 нейронов мозга уместились в объеме 1,5 литра. Сеть из 1011 искусственных электронных нейронов, выполненная на обладающих самой высокой степенью интеграции микросхемах, получилась бы величиной с жилой дом. Причем этот гигантский искусственный мозг был бы весьма примитивен по сравнению не только с человеческим мозгом, но и с мозгом животных. Мозг курицы сравнительно примитивен. Ее интеллект не способен усвоить даже простые арифметические действия сложения, вычитания или умножения. Зато курица находит зерно среди травы, мелких камешков, разного мусора. Подобную операцию пока неспособно выполнить созданное для распознавания зрительных образов электронное устройство.

В последние десятилетия ведутся активные исследования по проблеме искусственного интеллекта. Когда работа по моделированию только начиналась, казалось, что достаточно увеличить быстродействие машины и объем памяти -- и проблема будет решена, но потом стало ясно, что проблема не сводится к перебору множества вариантов. Тогда встала чисто теоретическая проблема: а что такое мышление? Ответить на этот вопрос не так просто. Мышление не сводится к решению задач. Это еще и творчество, целеполагание, умение задачу сформулировать. Поэтому если даже мы сумеем смоделировать работу мозга, неизбежно встает вопрос: какую программу в этот искусственный мозг надо закладывать? Если программа задается человеком, то искусственный интеллект -- это просто орудие для усиления человеческого мышления. Так, бинокль усиливает возможности наших глаз, но он не может видеть. Если искусственный интеллект сам создает себе программы, т. е. воспроизводит одну из важнейших функций интеллекта -- творчество, тогда возникает проблема цели «ради чего»? Цели человеческой деятельности и мышления задает общество, в котором живет человек. Следовательно, искусственный интеллект необходимо «социализировать», ввести в социум, сделать его реальным членом общества, наделить чувствами, эмоциями, волей. Но где гарантии, что цели искусственного интеллекта и цели общества совпадут? Все эти вопросы показывают, что проблема искусственного интеллекта -- это не только техническая проблема, но и проблема философская, гуманитарная. Для ее решения необходимо объединить усилия ученых различных направлений.

Страницы: 1, 2, 3, 4, 5


бесплатно рефераты
НОВОСТИ бесплатно рефераты
бесплатно рефераты
ВХОД бесплатно рефераты
Логин:
Пароль:
регистрация
забыли пароль?

бесплатно рефераты    
бесплатно рефераты
ТЕГИ бесплатно рефераты

Рефераты бесплатно, реферат бесплатно, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.