бесплатно рефераты
 
Главная | Карта сайта
бесплатно рефераты
РАЗДЕЛЫ

бесплатно рефераты
ПАРТНЕРЫ

бесплатно рефераты
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

бесплатно рефераты
ПОИСК
Введите фамилию автора:


Эволюционное учение

p align="left">Реально существующие популяции очень разнообразны по величине и форме. Структура популяции слагается из четырёх главных компонент: величины популяции, пространственной конфигурации, системы размножения и скорости расселения.

Величина популяции, т. е. число половозрелых размножающихся особей в каждом поколении (N), может колебаться от нескольких единиц до многих миллионов. Что касается пространственного распределения популяции, то можно выделить три основные категории: 1) большие непрерывные популяции; 2) мелкие изолированные колониальные популяции (или популяции, соответствующие островному типу); 3) линейные популяции. Кроме того, существуют разнообразные варианты, промежуточные между этими трёмя основными типами.

Примером больших непрерывных популяций служат популяции злаков, растущих на равнинах и покрывающих площади шириной в десятки или сотни километров. Организмы с колониальной популяционной системой образуют ряд разбросанных, разобщённых и нередко мелких популяций. Примерами могут служить наземные животные, обитающие на архипелагах; пресноводные формы, населяющие цепь озер, обитатели горных вершин в горной местности и организмы, ограниченные определённым типом почвы или горной породы с пятнистым распределением. Линейные популяции возникают вдоль рек, на побережьях морей и в аналогичных местообитаниях, обладающих большой протяженностью и более или менее непрерывных в одном измерении, но коротких и ограниченных в другом.

Часто встречаются и различные промежуточные состояния. Большая популяция может быть непрерывной в одних частях занимаемой ею области, но прерывистой или полунепрерывной в других. Подобным же образом колонии, населяющие систему островов, могут быть изолированы лишь частично, а не полностью. В следующем разделе мы опишем конкретный пример -- структуру популяции гигантской секвойи, или мамонтова дерева (Sequoiadendron giganteum), в которой сочетаются самые разнообразные состояния -- от изолированных колоний на севере до прерывистого лесного пояса на юге.

Что касается систем размножения, то их диапазон очень широк -- от свободного неродственного скрещивания до самооплодотворения. Часто встречаются такие промежуточные типы, как свободное скрещивание между близкими соседями; инбридинг, осуществляемый иными способами, нежели самооплодотворение (например скрещивание между сибсами у животных); сочетание неродственного скрещивания с самоопылением, как у гермафродитных, но самосовместимых цветковых растений.

Варианты пространственного распространения и систем размножения встречаются во всевозможных сочетаниях, создавая в результате чрезвычайно разнообразные структуры популяций. Так, большая непрерывная популяция может состоять из свободно скрещивающихся особей, как у многих опыляемых ветром травянистых растений равнин, но она может также состоять из особей с ограниченной свободой скрещивания или из инбредных особей. Подобно этому небольшая изолированная колония может состоять или из свободно скрещивающихся или из инбредных особей. Структура популяции оказывает влияние на характер её изменчивости, о чем будет сказано ниже.

Популяции Мамонтова дерева

Мамонтово дерево (Sequoiadendron giganteum) -- перекрёстноопыляющееся при помощи ветра хвойное дерево -- встречается в сосново-пихтовых лесах на небольших высотах (1500 -- 2400 м) на западных склонах гор Сьерра-Невада в Калифорнии. Область его распространения образует узкую полосу протяженностью около 400 км . В пределах этой области мамонтово дерево встречается в виде ряда обособленных и более или менее разобщённых популяций

Число локальных популяций по разным оценкам колеблется от 32 до 75 в зависимости от того, считать ли популяции в форме гантелей за одну или за несколько. По данным разных ботаников, число рощ равно 32 (Jepson, 1909), 71 (Fry, White, 1938) и 75 (Rundel, 1972a)*. Мы следуем оценке Джепсона (Jepson) с тем, чтобы использовать его старые демографические данные.

В самом начале XX в. 32 различаемые здесь локальные популяции имели размеры, приведённые. Мелкие популяции называют рощами, а крупные, за немногими исключениями -- лесами. В период проведения учетов, результаты которых представлены, эти леса интенсивно вырубались, но пни от поваленных деревьев ещё оставались на месте. Поэтому данные таблицы отражают величину прежних, ненарушенных популяций. Величина популяций сильно варьирует -- от рощиц, состоящих всего из нескольких деревьев, До лесов, в которых насчитываются тысячи индивидуумов. По данным более позднего учета (Fry, White, 1938*), число деревьев в большинстве популяций уменьшилось.

В настоящее время границы локальных популяций определяются, по крайней мере в некоторых исследованных случаях, влажностью почвы. Рощи находятся в тех местах, где в засушливые летние месяцы почва содержит достаточно влаги. Источником почвенной влаги в высоких горах служат летние дожди. Некоторые участки, расположенные на средней высоте, в период дождей накапливают грунтовые воды, а другие нет; мамонтово дерево растет на участках первого типа (Rundel, 1972b*).

Полиморфизм

Согласно определению, полиморфизм -- это существование в популяции двух или более резко различающихся (прерывистых) форм, при котором частота более редкой формы определяется не одним лишь мутированием (Ford, 1964, 1965*). Иными словами, полиморфизм -- это такая изменчивость в локальной воспроизводящейся популяции, при которой проявляется чётко выраженное или резкое менделевское расщепление.

Такое определение полиморфизма не позволяет относить к нему некоторые типы изменчивости. Оно исключает чисто фенотипическую изменчивость (поскольку это негенетическая изменчивость); оно исключает географическую изменчивость (которой не существует в одной популяции); оно исключает полигенную изменчивость (при которой не происходит расщепления на резко различающиеся классы); и, наконец, оно исключает генетическую изменчивость, обусловленную новыми или повторными мутациями.

На основе разных критериев можно выделять различные типы полиморфизма. Важно различать генетический полиморфизм и хромосомную изменчивость. Генетический полиморфизм -- это прерывистая изменчивость по гомологичным аллелям одного и того же генного локуса. Хромосомным называют полиморфизм по типам хромосом, например по половым хромосомам, или по таким перестройкам, как инверсии.

Различают также переходный и сбалансированный полиморфизм. В случае переходного полиморфизма разнообразие носит временный характер: оно наблюдается до тех пор, пока происходит процесс замещения одной формы другой при контролирующем действии естественного отбора. При сбалансированном полиморфизме разные типы представляют собой более или менее постоянные компоненты данной популяции благодаря естественному отбору, который благоприятствует сохранению разнообразия (Ford, 1964, 1965*).

Все формы полиморфизма -- генетический, хромосомный, переходный и сбалансированный -- весьма обычны и широко распространены в живой природе. В популяциях организмов с половым размножением полиморфизм в сущности наблюдается всегда. В следующем разделе мы опишем конкретный пример -- полиморфизм по группам крови у человека.

Полиморфизм по группам крови у человека

Разные люди по-разному реагируют на переливание крови. В некоторых случаях переливание крови приводит к агглютинации, или слипанию, эритроцитов, тогда как в других этого не происходит. Реакция агглютинации обусловлена иммунологическим взаимодействием антигенов, содержащихся в эритроцитах донора, и антител, содержащихся в сыворотке крови реципиента.

В зависимости от типа содержащегося в крови антигена различают четыре группы крови (А, В, АВ и О). Каждый человек относится к одному из этих четырёх фенотипических классов. Индивидуум, обладающий кровью группы А, может дать свою кровь для переливания другому индивидууму с той же группой крови, у которого при этом не возникнет агглютинации. Подобным же образом кровь группы В можно переливать людям, имеющим группу В. Но переливание крови группы А людям с группой В или крови группы В людям с группой А вызывает сильную агглютинацию. Нет нужды описывать здесь реакции, возникающие при всех возможных сочетаниях групп крови (см. Stern, 1960; Race, Sanger, 1962*). В общем агглютинация происходит в тех случаях, когда донор и реципиент имеют разные группы крови.

Группы крови определяются серией из трёх аллелей: IA, IB и I0. Аллель I0 рецессивен по отношению к аллелям IA и IB (иногда его обозначают буквой i). Аллели IA и IB -- кодоминантны. Шесть диплоидных генотипов, образуемых этими трёмя аллелями, фенотипически проявляются как четыре группы крови в системе АВО (табл. 3.2). На самом деле у аллеля IA имеются различные, но иммунологически сходные изоаллели (IA1, IA2 и т. д.), поэтому число возможных генотипов больше шести; однако в нашем обсуждении этими тонкими различиями аллеля IA можно пренебречь.

Популяции человека обычно полиморфны по группам крови системы АВО. Частоты различных групп крови и лежащих в их основе аллелей известны для сотен локальных популяций из самых различных областей земного шара. В табл. 3.3 приведены частоты разных аллелей для трёх популяций. Как показывают эти примеры, разные популяции человека сходны в том, что все они полиморфны по группам крови АВО, однако различаются по частотам аллелей. У каждой локальной популяции имеется свой генофонд с характерным для нее составом аллелей гена I.

Локальные популяции представляют собой части более крупных региональных расовых групп. У родственных локальных популяций, обитающих в одной и той же области, генофонды обычно несколько различаются. Так, частота аллеля IA среди населения шведского города Упсала составляет, как указано в табл. 3.3, 31.9%, а среди населения другого шведского города, Фалуна -- 28.4%. Напротив, между географическими расами наблюдаются устойчивые различия ко частоте аллелей.

Почти во всех популяциях коренных обитателей Западной Европы наблюдается высокая частота аллеля IA и низкая (менее 10%) частота аллеля IB. В Центральной Азии наблюдается высокая (20 -- 30%) частота аллеля IB. Среди американских индейцев аллель I0 встречается с высокой частотой, тогда как аллель IB редок или отсутствует вовсе (Mourant, 1954; Mourant et al., 1976*). Равновесие между разными типами несколько сдвигается при переходе из одной географической области в другуюЧрезвычайно интересно, что параллельная полиморфная изменчивость по группам крови АВО обнаружена у человекообразных обезьян. У шимпанзе найдены группы А и 0, у орангутана и гиббона имеются группы А, В и АВ (Mourant, 1954; Wiener, Moor-Jankowsky, 1971*). Таким образом, полиморфизм по группам крови системы АВО возник в процессе эволюции раньше, чем сам вид Homo sapiens, и им обладают также ближайшие родичи человека в отряде приматов.

У человека существует ещё несколько систем групп крови: система Rh, система MN и другие. Популяции человека полиморфны также и по этим системам (Race, Sanger, 1962; Mourant et al., 1976*). Полиморфная изменчивость по системам Rh и другим, по-видимому, независима от изменчивости по системе АВ0.

Полиморфизм по ферментам

Метод гель-электрофореза даёт возможность обнаруживать полиморфизм по ферментам и по некоторым белкам, который не удавалось выявить обычными генетическими методами. Экстракт какой-либо ткани помещают в гель и подвергают действию электрического поля. Вследствие характерных особенностей подвижности в электрическом поле разных ферментов последние физически разделяются; затем гель окрашивают, и разные ферменты выявляются в виде обособленных пятен. Этим методом можно выявить аллельные различия для одной ферментной системы и генные различия между ферментами.

Гетерозиготность и норма

Генофонды свободно скрещивающихся животных и растений обычно содержат, как было отмечено выше, во многих генных локусах по многу аллелей. Таким образом, в результате свободного скрещивания возникают высокогетерозиготные диплоидные особи. Многие аллели в каждом локусе уже подвергались в предыдущих поколениях отбору на хорошую комбинационную способность в диплоидных гетерозиготных генотипах. Особи с нормальным фенотипом и нормальной жизнеспособностью представляют собой гетерозиготы. Кроме того, нормальное фенотипическое состояние создаётся различными гетерозиготными комбинациями генов. Об этом свидетельствуют результаты инбридинга таких свободно скрещивающихся диплоидных организмов.

В популяциях Drosophila melanogaster встречаются иногда аберрантные особи с дополнительными жилками на крыльях; частота таких особей очень низка. Дубинин (1948)* использовал большое число нормальных самок дикого типа из алма-атинской популяции D. melanogaster в качестве исходного материала для выведения чистых линий. Оказалось, что 60 различных инбредных линий давали потомков с дополнительными жилками. После инбридинга на протяжении ряда поколений этот аберрантный признак был выявлен в 68% изученных линий. Этот признак экспрессировался в результате инбридинга и в других популяциях, помимо алма-атинской.

Концепция популяции

Концепцию генетически изменчивых популяций как репродуктивных единиц ни в коей мере нельзя считать самоочевидной. Этой концепции не существовало ни в XVIII, ни в начале XIX в., а в некоторых областях биологии она отсутствует до сих пор. Согласно Майру (Mayr, 1972a, 1982*), её ввел в биологию Дарвин в 1859 г. Концепция популяции была одним из элементов переворота, произведенного Дарвином в научном мышлении.

Концепция популяции прямо противоположна эссенциализму. Сторонники эссенциализма считают, что наблюдаемые в мире явления представляют собой отражения лежащих в их основе сущностей. Явления предстают в различных формах, сущность же их неизменна. Следовательно, члены того или иного класса объектов, в том числе и особи, составляющие какую-либо популяцию, -- это различные выражения одной и той же сущности. Эссенциализм в том или ином варианте был традиционным философским учением в Европе. Философия Платона, христианское богословие и философский идеализм представляли собой различные модификации эссенциализма. Естественно, что эссенциализм господствовал в научном мышлении в ранний период развития биологии. Здесь он принял форму, которую Майр (Mayr, 1957a, b, 1972a; 1982*) назвал типологическим мышлением. Согласно этим взглядам, отдельные организмы представляют собой несовершенные, а потому изменчивые проявления архетипа того вида, к которому они принадлежат.

Борьба за существование. Геометрическая прогрессия размножения и борьба за существование

Вы, наверное, слышали эту старинную задачу. "Индийский царь предложил изобретателю шахмат, чтобы он сам выбрал себе награду за создание этой игры. Тот попросил выдать ему за первую клетку шахматной доски одно пшеничное зерно, за вторую - два, за третью - еще в два раза больше и т.д. Сколько зерен должен получить изобретатель шахмат?"

 Сформулируем эту задачу по-другому. Пусть у нас есть одно зерно пшеницы. Посадим его в землю. Из него вырастет растение, в колосе которого будет всего 2 зерна. Высадим их вновь и так далее. Сколько растений у нас будет через 64 поколения? Ответ: 9 223 372 036 854 775 808 растений. Если каждое растение занимает площадь 1 кв. см., то общая площадь нашего пшеничного поля через 64 поколения почти вдвое превысит площадь Земного шара.

Давно известно, что все живые организмы размножаются в геометрической прогрессии. Как писал Дарвин: «Нет ни одного исключения из правила, по которому любое органическое существо численно возрастает естественным путем с такой большой скоростью, что не подвергайся оно истреблению, потомство одной пары очень скоро заняло бы всю землю. Считается, что из всех известных животных наименьшая воспроизводительная способность у слона, и я старался вычислить вероятную минимальную скорость естественного возрастания его численности; он начинает плодиться, всего вероятнее, в 13-летнем возрасте и плодится до 90 лет, принося за это время не более шести детенышей, а живет до ста лет; если это так, то по истечении 740--750 лет от одной пары получилось бы около 19 миллионов живых слонов».

Давно известно и то, что в каждом поколении огромное количество живых организмов гибнет на разных стадиях своего жизненного цикла. Из множества рожденных потомков только немногие доживают до вступления в цикл размножения. Не все дожившие участвуют в размножении. При оплодотворении каждая зигота получает только крохотный шанс на жизнь. За саму жизнь приходится бороться. Но этого мало. Мало просто выжить и благополучно состариться. Для того, чтобы оставить свой след в эволюции, нужно произвести потомство. Но и этого мало. Мало просто произвести потомство, нужно это потомство сохранить. За это тоже надо бороться.

Еще Дарвин предупреждал, что борьбу за существование не следует понимать, как примитивную драку. Он писал: «Я должен предупредить, что применяю этот термин в широком и метафорическом смысле, включая сюда зависимость одного существа от другого, а также включая (что еще важнее) не только жизнь особи, но и успех в оставлении потомства».

Принято выделять три формы борьбы за существование: борьбу за жизнь с абиотическими факторами (конституциональную борьбу), с представителями других видов (межвидовую борьбу) и с представителями своего собственного вида (внутривидовую борьбу). Это выделение весьма условно и, по существу, как мы увидим далее, эти формы тесно связаны друг с другом.

Конституциональная борьба за существование

Жизнь на Земле заполнила множество экологических ниш, которые очень сильно отличаются друг от друга. Даже организмы, принадлежащие к одному отряду, могут обитать в очень разных условиях. Например, грызуны обитают и далеко за Полярным кругом, и в раскаленных пустынях. Каждую из этих ниш занимает своя группа видов, уже прошедших через многие поколения борьбы за существования в этих условиях.

Эта борьба не прекращается ни на минуту. В каждом поколении рождаются особи, которые генетически отличаются друг от друга. Среди них выживают только те, кто наилучшим образом приспособлен к тем условиям, которые есть «здесь» и «сейчас» - в данной экологической нише и в данный момент времени. Но внешние условия непостоянны. Температура и влажность резко меняются в течение каждого года. В таких условиях преимущество в борьбе за жизнь получают особи, которые способны адаптироваться ко всему спектру этих изменений. Борьба за жизнь происходит каждую минуту, но победителями в этой борьбе оказывается те, кто продержится дольше, те, кто обладает наиболее надежными и хорошо скоординированными адаптациями.

Внешние условия непостоянны не только в течение года, они постепенно меняются год за годом. Меняется климат на всей Земле. Приходят и уходят ледниковые периоды. Те приспособления, которые обеспечивали победу в борьбе за жизнь вчера, могут оказаться неадекватными завтра. Физический мир вокруг живых организмов постоянно и непредсказуемо меняется. Вместе с ним меняются и правила борьбы за жизнь, меняются критерии приспособленности.

Межвидовая борьба за существование

Жизнь каждого организма зависит не только от абиотических условий, но и от множества других видов животных, растений, микроорганизмов, с которыми он, так или иначе, взаимодействует. Взаимоотношения типа хищник-жертва, паразит-хозяин играют важнейшую роль в жизни каждого организма.

Каждое усовершенствование любого вида в экосистеме ведет к ухудшению условий для других видов. Поэтому, для того, чтобы выжить, все виды, входящие в экосистему должны непрерывно эволюционировать. Эта закономерность получила название «принцип Красной Королевы» по имени героини книги Л. Кэрролла «Алиса в Зазеркалье». Крылатая фраза Красной Королевы «В этом мире нужно бежать из всех сил, только для того, чтобы остаться на месте» отражает самое существо борьбы за существование.

Большинство живых организмов погибает или оказывается исключенными из размножения не под действием физических факторов, а в результате действий других видов - паразитов, хищников, конкурентов. В межвидовой борьбе, как и в борьбе с абиотическими факторами, не бывает передышек. Она идет постоянно, день за днем, поколение за поколением и правила этой борьбы постоянно меняются. Однако эти изменения носят совсем иной характер, чем в борьбе с абиотическими факторами. Климат меняется постоянно и непредсказуемо, но он меняется не обязательно во вред живым организмам. Хищник всегда меняется во вред жертве, совершенствуя свои методы охоты. Жертва меняется во вред хищнику, совершенствуя способы защиты от него. Паразит меняется таким образом, чтобы использовать максимум ресурсов, которые он может черпать из организма хозяина, а хозяин развивает и усовершенствует все новые и новые средства борьбы с паразитом. Возникает ситуация замкнутого круга, когда усовершенствование жертвы в противостоянии хищнику влечет за собой усовершенствование способов охоты у хищников, которое в свою очередь влечет за собой усовершенствование жертвы, и так круг за кругом. Всем видам, входящим в экосистему приходится «бежать из всех сил, только для того, чтобы остаться на месте» - приходится постоянно меняться только для того, чтобы сохранить своем место в экосистеме.

Парадоксальная особенность межвидовой борьбы за существование состоит в том, что в ней бывают побежденные, но не бывает безусловных победителей. Если один из видов, включенных в экосистему, «проигрывает» в этой борьбе и вымирает, то жизнь видов-победителей от этого не становится легче. Если вид-хищник истребляет вид-жертву, он тем самым ставит под угрозу свое собственное существование. Если жертве удается «победить» хищника, став трудно достижимой для него добычей, то это оказывается Пирровой победой. За ней следует увеличение численности вида «победителя», быстрое истощение необходимых ему ресурсов, резкое увеличение численности паразитов и в результате сам «победитель» оказывается на грани вымирания. Вымирание тех или иных видов не снижает остроты межвидовой борьбы в биоценозе - на смену вымершим видам приходят их бывшие конкуренты.

Особой остроты межвидовая борьба достигает в тех случаях, когда противоборствуют разные виды, обитающие в сходных экологических условиях и использующие одинаковые источники питания. В результате межвидовой конкуренции происходит либо вытеснение одного из видов, либо приспособление видов к разным условиям в пределах единого ареала, либо, наконец, их территориальное разобщение.

Внутривидовая борьба за существование. Представьте себе ситуацию. Два зайца удирают от волка. Один из них говорит другому: «На что ты надеешься? Тебе все равно не удастся бежать быстрее волка». «А мне не нужно бежать быстрее волка, мне нужно бежать быстрее, чем ты: тогда волку достанешься ты, а не я, - отвечает другой. Зайцы соревнуются в скорости бега не с волками, а друг с другом. Волк, который гонится за зайцем, соревнуются не с ним, а с другим волком, который в другом лесу гонится за другим зайцем. Именно на внутривидовом уровне реализуется и межвидовая борьба, и борьба с абиотическими факторами.

Особи, принадлежащие к одному виду, отличаются друг от друга по множеству признаков. Среди множества особей данного вида выживают и размножаются только те, которые лучше, чем их соплеменники противостоят превратностям климата, спасаются от хищников, добывают пищу, защищаются от паразитов. Таким образом, борьба с абиотическими факторами и межвидовая борьба являются компонентами внутривидовой конкуренции. Однако конкуренция между особями одного вида этим не ограничивается.

 Тенденция каждого вида к неограниченному размножению вступает в противоречие с ограниченностью жизненных ресурсов: пищи, воды, укрытий, солнечного света и т.п. За все эти ресурсы возникает жесткая конкуренция между особями одного вида, поскольку все они имеют одинаковые потребности. Эта конкуренция может быть прямой и легко заметной для наблюдателя. Так, например, борьба за подходящие укрытия, за наиболее богатые кормовые участки, за самок может приводить к открытым конфликтам между представителями одного и того же вида. Однако чаще всего внутривидовая конкуренция оказывается непрямой и скрытой от наблюдения. Быстро растущие деревья затеняют медленно растущие и тем самым лишают их солнечного света - важнейшего и, казалось бы, неограниченного ресурса. Лев, съедая антилопу, тем самым отнимает пищу у другого льва. В дупле, уже занятом одной парой птиц, не может поселиться другая пара. Победители во внутривидовой борьбе, таким образом, получают преимущество в размножении и, соответственно, растет их генетический вклад в следующее поколение.

Страницы: 1, 2, 3


бесплатно рефераты
НОВОСТИ бесплатно рефераты
бесплатно рефераты
ВХОД бесплатно рефераты
Логин:
Пароль:
регистрация
забыли пароль?

бесплатно рефераты    
бесплатно рефераты
ТЕГИ бесплатно рефераты

Рефераты бесплатно, реферат бесплатно, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.