бесплатно рефераты
 
Главная | Карта сайта
бесплатно рефераты
РАЗДЕЛЫ

бесплатно рефераты
ПАРТНЕРЫ

бесплатно рефераты
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

бесплатно рефераты
ПОИСК
Введите фамилию автора:


Синергетика как универсальная научная парадигма

Синергетика как универсальная научная парадигма

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ АГРО_ИНЖЕНЕРНЫЙ УНИВЕРСИТЕТ им. В.П.ГОРЯЧКИНА»

РЕФЕРАТ

на тему:

«СИНЕРГЕТИКА КАК УНИВЕРСАЛЬНАЯ НАУЧНАЯ ПАРАДИГМА»

Выполнил:

Студентка I курса ИЭФ

Луканина В. А.

Проверил:

Маслов Глеб Николаевич

1.ВВЕДЕНИЕ

В первой трети ХХ столетия механическое мировоззрение, исходящее из представлений о линейности, определенности и однозначности причинно-следственных связей, редукции любого сложного объекта к сумме более простых исходных элементов и выведения из них различных комбинаций всех свойств объекта, потерпело окончательное поражение. Это обнаружилось не только в описании биологических и социальных явлений, но и в фундаменте естествознания - физике. «В классической науке ХIХ века господствовало убеждение, что материи изначально присуща тенденция к разрушению всякой упорядоченности, стремление к исходному равновесию (в энергетическом смысле это и означало неупорядоченность или хаос)»1. Основанная на античных традициях поиска первокирпичиков Мироздания, физика изучала, главным образом, структуру и свойства объекта, наиболее существенные взаимосвязи между его отдельными элементами. Однако объекты природы нельзя представить в виде простой суммы отдельных элементов, они гораздо сложнее. «К описанию объекта природы не всегда применимы классические модели и представления, ибо мир является неделимым целым, сетью отношений, сетью взаимосвязанных и взаимообусловленных процессов, которые затрудняются познать и адекватно описать не только классическая, но и неклассическая науки»2. Классическая наука может объяснить лишь, как из порядка возникает хаос, чем обусловлены взрывы звезд, разрушение планет, старение и смерть организмов, распад цивилизаций.

1 Дубнищева Ф.М.: Концепция современного естествознания.- М.: Юнити, 1998, стр.231

2 Е.Н.Князева: Законы эволюции и самоорганизации сложных систем. -Наука, 1994,стр65

3 В.П.Ратников: Концепция современного естествознания: учебник -ЮНИТИ, 1997, стр.125

Эта направленность процессов связывается с ростом энтропии в изолированных системах и стремлением ее к некоторому максимуму, при котором система переходит в состояние хаоса. «Из хаоса, утверждали древние греки, Вселенная родилась, в хаос же, по предположению классической термодинамики, и возвратится»3.

При подготовке этого реферата у меня возник любопытный вопрос: если Вселенная эволюционирует только к хаосу, то как она могла возникнуть и сорганизоваться до нынешнего упорядоченного состояния? Но этим вопросом классическая термодинамика (как раздел физики) не задавалась, ибо сформировалась в эпоху, когда не стационарный характер Вселенной не обсуждался. «В это время единственным немым укором термодинамике служила дарвиновская теория эволюции»1. Ведь предполагаемый ею процесс развития растительного и животного мира характеризовался его непрерывным усложнением, нарастанием высоты организации и порядка. Зарождаются, растут и усложняются организмы, появляются их новые виды, более приспособленные к среде обитания, возникают новые звездные системы и новые цивилизации; беспорядочная группа рыб почти мгновенно превращается в косяк, птицы собираются в стаю, при этом и птицы в стае, и рыбы в косяке действуют столь синхронно, как будто это единый целостный организм. Живая природа почему-то стремится прочь от хаоса. Налицо явная несостыковка законов развития живой и неживой природы.

«Как получается, что система самопроизвольно переходит из состояния хаоса, наиболее вероятного и выгодного с энергетической точки зрения, в состояние порядка, менее вероятного и менее выгодного (с более высокой энергией)? Как и за счет чего происходит ее самоорганизация (самоупорядочение)?»2. Этими вопросами задавались ученые из разных областей естествознания, разработанные классической и неклассической наукой познавательные модели не могли ответить на эти вопросы. В очередной раз естественные науки оказались в тупике и были поставлены перед необходимостью перехода к новым качественным представлениям об окружающем мире, что в немалой степени способствовало возрастанию роли комплексных исследовательских программ в организации научных исследований. Другая важнейшая причина поиска нового подхода к его изучению лежит в области современной техники - проблем разработки средств получения, хранения и передачи информации, создания различных систем управления, регулирования и т.д.

«Отказ от механистической методологии и практические нужды общества потребовали поиска новых концепций и идей, учитывающих принципиальную сложность исследуемых объектов и ориентированных на познание их целостности и системных качеств»1. В числе первых научных дисциплин, поставивших эту проблему стали экономика, биология, психология и лингвистика. Но подходы к ее решению были найдены при исследовании поведения физических и химических систем. В процессе разрешения этой проблемы и сформировалась постнеклассическая наука. «Она акцентирует внимание на исследовании всей совокупности иерархий систем Мироздания как взаимосвязанной целостности или сети взаимодействующих элементов. Объект ее исследования - процесс развития, общие принципы самоорганизации и эволюции сложных систем разного уровня и разной природы, особенности смены качественных состояний, механизмы, динамика и пространственно-временная развертка этого процесса»2.

Однако речь идет не только об утверждении какой-то новой концепции, претендующей на общенаучное значение, а о создании новой познавательной модели, о новом направлении исследовательской деятельности, о выработке новой системы принципов научного мышления и нового категориального аппарата, о необходимости разработки и использования нового комплексного подхода к исследованию объектов и явлений. Все это было объединено и получило термин, введенный Г. Хакеном, «синергетика». «Синергетика - это некоторый междисциплинарный подход. В отличие от кибернетики, где акцент делается на процессах управления и обмена информацией, синергетика ориентирована на исследование принципов построения организации, ее возникновения, развития и самоусложнения»3.

1 В.Н.Михайлевский: Диалектика формировния совр. науч. Картины мира.-Л.:ЛГУ, 1989,с.45

2 Ф.М.Дягилев: Концепция современного естествознания.-М.:Юнити,1998,стр.92

2.ОСНОВНАЯ ЧАСТЬ

2.1 Характеристики самоорганизующихся систем

Итак, предметом синергетики являются сложные самоорганизующиеся системы. Один из основоположников синергетики Г. Хакен определяет понятие самоорганизующейся системы следующим образом: «Мы называем систему самоорганизующейся, если она без специфического воздействия извне обретает какую-то пространственную, временную и функциональную структуру. Под специфическим внешним воздействием мы понимаем такое, которое навязывает системе структуру и функционирование. В случае же самоорганизующихся систем испытывается извне неспецифическое воздействие. Например, жидкость, подогреваемая снизу, совершенно равномерно обретает в результате самоорганизации макроструктуру, образуя шестиугольные ячейки»1. Таким образом, современное естествознание ищет пути теоретического моделирования самых сложных систем, которые присуще природе,- систем, способных к самоорганизации, саморазвитию.

Основные свойства самоорганизующихся систем, по мнению Г. Хакена являются:

«1) исследуемые системы состоят из нескольких или многих одинаковых или разнообразных частей, которые находятся во взаимодействии друг с другом;

2) системы являются нелинейными;

3) речь идет об открытых системах, далеких от теплового равновесия;

4)системы нестабильны;

5)в них происходят качественные изменения;

1 Ю.Л.Климонтович: Без формул о синергетике.- Минск, 1986,стр.48

2 Концепция самоорганизации: становление нового образа мышления.- М.,1994, стр.36

3 Г.Николис, И.Пригожин: Познание сложного.- М., 1990, стр.84

6)в этих системах обнаруживаются эмерджентные (т.е. вновь возникшие) новые качества;

7)системы подвержены внешним и внутренним колебаниям;

8)возникают пространственные, временные, пространственно-временные или функциональные структуры;

9)структуры могут быть упорядоченными или хаотичными;

10)во многих случаях возможна математизация»2

Рассмотрим основные из этих свойств: открытость, линейность и диссипативность.

2.1.1 Открытость

Объект изучения классической термодинамики - закрытые системы, т.е. системы, которые не обмениваются со средой веществом, энергией и информацией. Напомним, что центральным понятием термодинамики является понятие энтропии. Оно относится к закрытым системам, находящимся в тепловом равновесии, которое можно охарактеризовать температурой. Именно по отношению к закрытым системам были сформулированы два начала термодинамики. В соответствии с первым началом, в закрытой системе энергия сохраняется, хотя и может приобретать различные формы. 1

Второе начало термодинамики гласит, что в замкнутой системе энтропия не может убывать, а лишь возрастает до тех пор, пока не достигнет максимума. Согласно второму началу термодинамики, запас энергии во Вселенной иссякает, а вся Вселенная приближается к «тепловой смерти».

И.Пригожин, И.Стенгерс: Порядок из хаоса.- М.,1986, стр.87

2 П.У.Эткинс:Порядок и беспорядок в природе.-М., 1986, стр.39

«Ход событий во Вселенной невозможно повернуть вспять, дабы воспрепятствовать возрастанию энтропии»1. Со временем способность Вселенной поддерживать организованные структуры ослабевает, и такие структуры распадаются на менее организованные, которые в большей мере наделены случайными элементами. «По мере того как иссякает запас энергии возрастает энтропия, в системе нивелируются различия. Это значит, что Вселенную ждет все более однородное будущее»2.

Вместе с тем, уже во второй половине XIX в. и особенно в XX в. биология, прежде всего теория эволюции Дарвина, убедительно показала, что эволюция Вселенной не приводит к понижению уровня организации и обеднению разнообразия форм материи. Скорее, наоборот. «История и эволюция Вселенной развивают ее в противоположном направлении - от простого к сложному, от низших форм организации к высшим, от менее организованного к более организованному»3. Иначе говоря, старея, Вселенная обретает все более сложную организацию. Попытки согласовать второе начало термодинамики с выводами биологических и социальных наук долгое время были безуспешными. Классическая термодинамика не могла описывать закономерности открытых систем. И только с переходом естествознания к изучению открытых систем появилась такая возможность.

Открытые системы - это такие системы, которые поддерживаются в определенном состоянии за счет непрерывного потока извне вещества, энергии и информации. Постоянный приток вещества, энергии или информации является необходимым условием существования неравновесных состояний в противоположность замкнутым системам, неизбежно стремящимся (в соответствии со вторым началом термодинамики) к однородному неравновесному состоянию.

1 Ю.Л.Климонтович:Статистическая теория открытых систем.-М., Наука, 1994, стр.82

2 Г.Хакен:Информация и самоорганизация.-М., 1993, стр.187

3 Л.В.Тарасов: Мир, построенный на вероятности.-М., 1984, стр.113

«Открытые системы - это системы необратимые; в них важным оказывается фактор времени»1.

Рисунок №1 Открытая система

В открытых системах ключевую роль - наряду с закономерным и необходимым ­ могут играть случайные факторы, флуктуационные процессы. «Иногда флуктуация может стать настолько сильной, что существовавшая организация разрушается»2.

1 С.Курдюмов:Синергетика:начала нелинейного мышления.-2,1993, стр.145

2 Н.Н.Моисеев:Современный рационализми мировоззренческие парадигмы.-3,1994, стр.152

3 Н.Н.Моисеев:Алгоритмы развития.-М., 1987, стр.126

4 Г.Николис, И.Пригожин:Познание сложного.- М., 1990, стр.184

2.1.2 Нелинейность

«Линейность абсолютизирует поступательность, безальтернативность, торжество постоянства»3.

Но если большинство систем Вселенной носит открытый характер, то это значит, что во Вселенной доминирует не стабильность и равновесие, а неустойчивость и неравновесность. «Неравновесность, в свою очередь, порождает избирательность системы, ее необычные реакции на внешние воздействия среды»4. Неравновесные системы имеют способность воспринимать различия во внешней среде и «учитывать» их в своем функционировании. Так, некоторые более слабые воздействия могут оказывать большее влияние на эволюцию системы, чем воздействия, хотя и более сильные, но не адекватные собственным тенденциям системы.

Процессы, происходящие в нелинейных системах, часто носят пороговый характер - при плавном изменении внешних условий поведение системы меняется скачком. Другими словами, в состояниях, далеких от равновесия, очень слабые возмущения могут усиливаться до гигантских волн, разрушающих сложившуюся структуру и способствующих ее радикальному качественному изменению.

«Нелинейные системы, являясь неравновесными и открытыми, сами создают и поддерживают неоднородности в среде»1. В таких условиях между системой и средой могут иногда создаваться отношения обратной положительной связи, т.е. система влияет на свою среду таким образом, что в среде вырабатываются некоторые условия, которые в свою очередь обуславливают изменения в самой этой системе (например, в ходе химической реакции или какого-то другого процесса вырабатывается фермент, присутствие которого стимулирует производство его самого). «Последствия такого рода взаимодействия открытой системы и ее среды могут быть самыми неожиданными и необычными»2.

2.1.3 Диссипативность

«Открытия неравновесной системы, активно взаимодействующие с внешней средой, могут приобретать особое динамическое состояние - диссипативность, которую можно определить как качественно своеобразное макроскопическое проявление процессов, протекающих на макроуровне»3. Неравновесное протекание множества микропроцессов приобретает некоторую интегративную результирующую на макроуровне, которая качественно отличается от того, что происходит с каждым отдельным ее микроэлементом. Благодаря диссипативности в неравновесных системах могут спонтанно возникать новые типы структур, совершаться переходы от хаоса и беспорядка к порядку и организации, возникать новые динамические состояния материи.

Диссипативность проявляется в различных формах: в способности «забывать» детали некоторых внешних воздействий; в «естественном отборе» среди множества микропроцессов, разрушающем то, что не отвечает общей тенденции развития; в когерентности (согласованности) микропроцессов, устанавливающей их некий общий темп развития, и т.д.

1 Г.Г.Малинецкий:Синергетика-теория самоорганизации.-М.:Наука, 1983, стр.146

2 С.Х.Карпенков: Концепция современного естествознания.-М.:Юнити,1998, стр.147

3 П.Девис:Случайная Вселенная.-М.:Мир, 1989, стр.165

2.2 Системная модель мира

«С точки зрения системного подхода Мироздание - это грандиозная суперсистема, состоящая из множества иерархически взаимосвязанных подсистем разной природы и разного уровня сложности (космические, физические, химические, геологические, биологические, психологические, политические, экономические и т.д.), находящихся в разного рода отношениях и связях друг с другом и образующих определенную целостность»1. Схематично она представлена на Рисунке №2. В ней выделены иерархии живой и неживой природы и социальные системы.

Выстроенная таким образом модель окружающего мира отражает его дискретность. На ней представлен мир как некий статичный срез, структура, в которой «все связано со всем». Однако окружающий нас мир непрерывен, находится в постоянном изменении и развитии. «Его можно представить как вселенский процесс самоорганизации материи, как последовательную смену состояний, направленный поток изменений, в котором созидание (усложнение, поступательное развитие, устойчивость) и разрушение (деградация, неустойчивость) периодически повторяются и взаимодействуют друг с другом»2. Характер их взаимодействия определяется множеством случайных факторов. Благодаря этому, с одной стороны существует то великое множество окружающего мира, которое мы наблюдаем вокруг себя, проявляется его неповторимость и неоднозначность, а с другой - сохраняется родство всего сущего, наблюдается определенная направленность процессов. «Мир представляется как открытая динамичная система, в которой «все взаимодействует со всем, все проявляется во всем», и самоорганизацией, которой управляют фундаментальные законы природы: закон минимума потенциальной энергии, как определяющий условие устойчивости; законы сохранения (массы-энергии, энтропии-информации и т.д.)»1.

1 Н.Р.Пригожин, И.Стенгерс:Время,хаос,квант.-М:Мир, 1994, стр.138

2 Р.Е.Реванский: Развивающаяся Вселенная.-М.:1995, стр.54

2.3 Самоорганизация и эволюция сложных систем, далеких от равновесия

Случайность и случайные флуктуации параметров системы играют особую роль в ее функционировании. «Нужно отличать два типа случайностей. Первый тип дает начало направленной эволюции системы и имеет созидающий характер, второй - порождает неопределенность, неоднозначность, разрушает и отсекает все лишнее»2.

1 Г.Хакен:Синергетика.-М.:Мир, 1993, стр.201

2 М.Эйген:самоорганизация материи эволюция биологических макромолекул.-М.:Мир, 1993,с.39

В результате их действия в системе возникают неустойчивости, которые могут служить толчком для возникновения из хаоса зародышей новых структур, которые при благоприятных условиях будут переходить во все более упорядоченные и устойчивые. Их спонтанное (самопроизвольное) образование происходит за счет внутренней перестройки системы и синхронного (одновременного) кооперативного взаимодействия ее элементов. Это явление и получило название самоорганизации. Самоупорядочивание системы связано с уменьшением ее энтропии. «Дезорганизация и случайность на микроуровне выступают созидающей силой, упорядочивающей состояние системы на макроуровне, интегрирующей ее элементы в устойчивое единое целое»1. «Порядок и беспорядок, организация и дезорганизация выступают в диалектическом единстве, их взаимодействие поддерживает саморазвитие системы»2.

Идеи самоорганизации высказывались еще в традиционной классической науке XVIII-XIX веков (космогоническая гипотеза Канта-Лапласа, рыночная экономическая теория Смита и т.д.). Но лишь во второй половине ХХ века, когда был накоплен достаточный теоретический и практический опыт, разработан необходимый математический аппарат (теория вероятностей, нелинейная динамика, теория катастроф, системный анализ, топология и т.д.) стало возможным детальное исследование поведения открытых систем, находящихся вдали от термодинамического равновесия, описание общих механизмов и закономерностей их развития. Основы теории самоорганизации были разработаны в трудах химиков, получивших мировой признание - И. Пригожина, Д. Николиса, Г. Хакена в семидесятых годах ХХ столетия.

1 П.Эткинс:Порядок и беспорядок в природе.-М.:Мир, 1987, стр.141

2 Г.Н.Рузавин: Концепция современного естествознания.-М.:Юнити,1997,стр.68

Термин «синергетика», ставший с названием общенаучного направления, которое изучает общие принципы самоорганизации и эволюции сложных систем разного уровня и разной природы, особенности процесса смены их качественных состояний на пути развития, в научный обиход ввел Г. Хакен. Большой вклад в становление идей синергетики внесли наши соотечественники: химик А.П.Руденко, физик Ю.Л, Климонтович, математики А.Н.Колмогоров и Я.Г. Синая. Основные законы и принципы синергетики были установлены на основе наблюдения процессов самоорганизации и эволюции сложных систем и, прежде всего, установление закономерностей протекания физико-химических процессов. Сегодня это трансдисциплинарная научная теория, идеи которой, зародившись в химии и физике, с успехом используются в экологии, биологии, геологии, экономике, политике, медицине и т.д. «Она дает новый образ мира природы, человека и общества как открытых систем, развивающихся по нелинейным законам, раскрывает двойственную природу случайного, его созидающее и деструктивное начала, показывает, что чередование порядка и хаоса является фундаментальным принципом развития»1.

«В основе синергетической парадигмы лежит утверждение о фундаментальной роли случайных флуктуаций в развитии мира, при этом случайность и неопределенность выступают неотъемлемое свойство не только микромира, но и всего Мироздания, включая самого человека с его непредсказуемыми эмоциями и невероятным разнообразием вариантов поведения в идентичных условиях»2. Понятие хаоса в синергетике отлично от классического представления беспорядка. Хаос, связанный со случайным отклонением отдельных параметров системы от некоторого среднего значения, имеет активное начало. В подходящих условиях даже малая флуктуация одного из параметров может привести к новому структурированию всей системы, то есть к новому порядку, к новому ее качеству.

Описывая процесс самоорганизации, Г.Хакен отмечает, что возникающая из хаоса упорядоченная структура является результатом конкуренции множества виртуальных состояний, заложенных в системе. В результате конкуренции происходит самопроизвольный выбор той структуры, которая наиболее адаптивна к сложившимся на данный момент к внешним и внутренним условиям. В рамках этих представлений Н.Н.Моисеев предложил концепция универсального эволюционизма. В ней дарвиновская триада, выдвинутая на основе эмпирических обобщений - изменчивость, наследственность и отбор, получила методологической обоснование. «Выведя эти термины за пределы биологического и расширив их смысл, можно использовать их для объяснения механизма развития систем любой природы»3.

1 КСЕ/под ред.В.Н.Лавриненко.-М.:Юнити,1997, стр.138

2 Г.Хакен:Синергетика.-М.:Мир, 1993, стр 184

3 Концепция самоорганизации: становление нового образа мышления.- М.,1994, стр 162

Случайность и неопределенность - это фундаментальное свойство материи обуславливает изменчивость окружающего мира. «Наследственность означает зависимость настоящего и будущего от прошлого. Степень этой зависимости определяется «памятью» системы, которая в пределе может принимать значения от нуля (хаотические образования, лишенные памяти) до бесконечности (жестко детерминированные системы)»1. Но реальные системы имеют некоторый «коридор» памяти; ширина которого зависит от уровня организации. «Изменчивость создает возможность реализации множества возможных вариантов развития системы»2. Однако наследственность ограничивает их число. Из множества допустимых вариантов «отбираются» те, которые не противоречат фундаментальным законам природы, в результате отбора «выживают» наиболее целесообразные и устойчивые в сложившихся условиях структуры.

«В системе под влиянием поступающих извне ресурсов идет медленное количественное накопление несущественных изменений, что приводит к ослаблению гомеостаза»3. Это происходит до определенного предела, за которым наблюдается кардинальное изменение ее состояния, которое осуществляется практически мгновенно, скачком. Система временно оказывается в неустойчивом состоянии, «теряет память», и характер ее последующего развития определяется только теми случайными факторами, которые в этот момент действуют на систему. Для выхода из него у системы есть две возможности: деградация, разрушение, инволюция либо самоорганизация, усложнение, эволюция. Весь процесс развития системы можно представить как череду сменяющих друг друга медленных и скачкообразных изменений.

Страницы: 1, 2


бесплатно рефераты
НОВОСТИ бесплатно рефераты
бесплатно рефераты
ВХОД бесплатно рефераты
Логин:
Пароль:
регистрация
забыли пароль?

бесплатно рефераты    
бесплатно рефераты
ТЕГИ бесплатно рефераты

Рефераты бесплатно, реферат бесплатно, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.