бесплатно рефераты
 
Главная | Карта сайта
бесплатно рефераты
РАЗДЕЛЫ

бесплатно рефераты
ПАРТНЕРЫ

бесплатно рефераты
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

бесплатно рефераты
ПОИСК
Введите фамилию автора:


Поры, каналы и переносчики

p align="center">ЩЕЛЕВЫЕ КОНТАКТЫ

Щелевые контакты -- это кластеры мембранных каналов, которые соединяют содержимое соседних клеток в тканях. Через такие каналы проходят небольшие молекулы -- метаболиты и неорганические ионы. Диаметр каналов в клетках млекопитающих составляет от 12 до 20 А. Через иих осуществляется перенос из клетки в клетку ионов и химических веществ. Таким образом, эти каналы соединяют две плазматические мембраны. Опыты по клонированию и биохимической реконструкции показали, что канал образован олигомером единственного пептида, мол. масса которого для клеток печени составляет 32000. Исходя из данных об аминокислотной последовательности, можно предположить, что в каждой субъединице имеются четыре трансмембранные а-спирали. К настоящему времени охарактеризованы белки щелевых контактов из нескольких тканей; по-видимому, они образуют обширную группу родственных белков. Эти каналы обычно находятся в открытом состоянии, но закрываются, когда понижается скорость метаболизма. Первичным сигналом для закрывания канала является, по всей вероятности, повышение концентрации Са2 +, хотя при изменении трансмембранного потенциала или закислении среды также наблюдается закрывание канала. Возможно, эффект Са2+ является опосредованным. Другим способом регуляции работы канала может быть фосфорилирование.

Основная модель, описывающая строение и возможный механизм работы канала, представлена в работе. Для выяснения структуры канала авторы использовали электронную микроскопию. Каждый канал состоит из 12 субъединиц, по шесть от каждой клетки. Канал представляет собой гексамерную структуру с центральной порой. Каждая субъединица имеет форму стержня, пронизывающего бислой. Два гексамерных комплекса соседних мембран соединены конец к концу и образуют протяженный канал, объединяющий обе мембраны. Структура канала щелевого контакта зависит от наличия ионов Са2 +. В присутствии Са2 + субъединицы расположены параллельно центральной оси канала, а в отсутствие этих ионов они несколько наклонены. Это наводит на мысль, что открывание и закрывание канала происходит аналогично работе ирисовой диафрагмы фотоаппарата; субъединицы скользят друг относительно друга в ответ на сигнал к открыванию или закрыванию. Однако точный механизм этого процесса далеко не ясен.

ЯДЕРНЫЕ ПОРОВЫЕ КОМПЛЕКСЫ

Ядерная оболочка состоит из двух мембран. Ядерные поровые комплексы участвуют в транспорте веществ между ядром и цитоплазмой. Эти поры, аналогично каналам щелевых контактов, пронизывают две мембраны. По данным электронной микроскопии высокого разрешения, ядерная пора имеет октагональную симметрию, но устроена сложнее, чем канал щелевого контакта. Ядерная пора представляет собой два октагональных цилиндра, соединенных вместе наподобие канала щелевого контакта. Полипептидный состав поры ядерной оболочки окончательно не установлен.

Размер поры ядерной оболочки весьма велик, радиус ее функциональной части составляет -- 90 А; через нее могут проходить как небольшие растворимые вещества, так и многие крупные молекулы. Существуют специальные механизмы транспорта макромолекул внутрь ядра и из ядра в цитоплазму, однако до сих пор о них мало что известно.

ПОРИНЫ

Порины образуют поры, которые функционируют как молекулярные сита, опосредуя диффузию небольших гидрофильных молекул через наружную мембрану грамотрицательных бактерий. Исследование более чем сорока различных поринов позволило выявить некоторые их общие особенности. Мол. масса поринов варьирует от 28 ООО до 48 ООО. В мембране они обычно присутствуют в виде тримеров. Для поринов характерно высокое содержание /3-слоев. Наиболее полно к настоящему времени охарактеризованы порины из Е. coli: OmpF, OmpC, PhoE и LamB. Их основной особенностью является то, что они образуют наполненный водой трансмембранный канал, причем этот канал образован в основном ^-структурными элементами. На рис. 8.7 представлена одна из возможных моделей образования поринового канала из амфифильных, так и по селективности. Селективность связана с наличием внутри канала или около входа в канал заряженных аминокислотных остатков. Измерения проводи-

мости одиночных каналов и проницаемости пор, а также электронно-микроскопические исследования указывают на то, что строение пор не одинаково для разных поринов. В одних случаях тримеры порина образуют один большой канал, в других -- три независимых канала. Канал OmpF имеет три входа с наружной стороны клетки, которые затем сливаются, образуя единый выход в периплазму.

Три из четырех порииов Е. coli имеют много общих структурных особенностей, а их аминокислотные последовательности в значительной степени гомологичны. Эти порины образуют поры диаметром 10--12 A. Четвертый порин, Lam В, значительно отличается от трех предыдущих, хотя его аминокислотная последовательность обнаруживает некоторое сходство с ними. Ои тоже образует главным образом /3-складчатые структуры. LamB является частью системы транспорта мальтозы и обладает сродством к производным мальтозы. В отсутствие мальтозы LamB образует небольшие каналы, которые целиком блокируются при связывании мальтозы. Главной функцией LamB является стимуляция накопления мальтозы, а не работа в качестве диффузионной поры для небольших растворимых веществ. Топографию LamB исследовали с помощью различных методов, включая генетические. В результате была построена детальная модель этого канала, пронизывающего мембрану.

Предположение о том, что порины являются воротными каналами и, значит, могут находиться в закрытом состоянии, подвергалось всесторонней проверке. In vitro работа поринов может регулироваться напряжением на мембране, однако физиологическая значимость этого явления остается неясной.

И наконец, следует отметить, что из наружной мембраны митохондрий были выделены порины, работа которых регулируется напряжением на мембране. Они называются потенциалзависимыми анионселективными каналами. Эти порины не являются родственными бактериальным поринам, но они также рбразуют цилиндрическую пору из /3-структурных элементов

nAChR-канал является примером канала, работа которого регулируется нейромедиатором. Эти каналы находятся главным образом в концевых пластинках -- постсинаптических мембранах нервно-мышечных соединений скелетных мышц. При электрическом возбуждении нейрона из него высвобождается нейромедиатор аце-тилхолин. Последний диффундирует от пресинаптической мембраны нейрона к мембране скелетной мышцы. Никотиновые ацетилхо-линовые рецепторы имеют вид плотно упакованных кластеров в плазматической мембране мышечного волокна, входящей в состав концевой пластинки. При взаимодействии с ацетилхолином канал открывается, опосредуя селективное перемещение катионов. Под действием ионного тока изменяется трансмембранный потенциал и происходит электрическое возбуждение мышечной клетки, что приводит к сокращению мышцы.

nAChR-канал регулируется с помощью химических механизмов, причем сигнал действует непосредственно на канал. Химдческим сигналом является ацетилхолин, который передает возбуждение от нервного волокна к мышце. Анализ аминокислотной последовательности показал, что никотиновый ацетилхолиновый рецептор и два других нейромедиаторных рецептора -- глициновый рецептор и рецептор 7-аминомасляной кислоты -- имеют много общих структурных особенностей. Они образуют группу химически регулируемых каналов. Впрочем, несмотря на сходство аминокислотных последовательностей, эти белки имеют разную четвертичную структуру. Биохимические свойства рецептора глутамата, одного из важных иейромедиаторов головного мозга, не исследованы.

Отметим, что номенклатура и классификация нейромедиатор-ных рецепторов основаны главным образом на данных о влиянии на них различных лекарственных веществ, в особенности тех, которые выступают в роли агонистов, стимулируя рецептор наподобие естественного нейромедиатора, или антагонистов, которые блокируют стимулирующий эффект агонистов. Например, рецепторы ацетилхолина в начале этого века разделяли на никотиновые и мус-кариновые на основании их фармакологических различий. Никотиновые рецепторы ацетилхолина -- это группа родственных рецеп-торных белков. Мускариновый рецептор из клеток мозга структурно не сходен с nAChR-каналом и в действительности не является каналом. Необходимо отметить, что охарактеризованы никотиновые ацетилхолиновые рецепторы из ткани мозга, по некоторым структурным и функциональным особенностям отличающиеся от каналов коицевой пластинки.

По сравнению с другими канальными белками nAChR-канал охарактеризован наиболее полно, и связано это с тем, что существует легкодоступный источник, содержащий большие количества данного белка. Большая часть биохимических экспериментов была поставлена с использованием рецептора, выделенного из электрического органа скатов Eiectrophorus и Torpedo. Показано, что эти каналы очень похожи на каналы концевых пластинок как в структурном, так и в функциональном отношении. Гибридные белки, состоящие из субъединиц рецепторов из электрического органа Torpedo и нервио-мышечиого соединения быка, оказались полностью функциональными.

Выделенный и очищенный nAChR-канал состоит из пяти полипептидных субъединиц четырех разных типов со стехиометрией а208у. Две копии а-субъединиц, присутствующие в комплексе, по всей вероятности, выполняют разные функции. Субъединицы близки друг к другу по аминокислотной последовательности и различаются по кажущейся молекулярной массе. Все субъединицы фосфорилированы и гликозилированы, а к двум, а и /3, ковалентно присоединен липид.

На основе электронно-микроскопических методов реконструкции изображения была построена модель канала, приведенная на рис. 8.8. Метод негативного контрастирования ясно показыва-

ет, что канал имеет центральное отверстие диаметром 30 А с внеклеточного конца и значительно более узкое с ци-топлазматической стороны. На фотографиях четко видна пентамер-ная структура комплекса. Это означает, что пять субъединиц организованы вокруг центральной поры. Использование реагентов, образующих поперечные сшивки, показывает, что субъединицы расположены в следующей последовательности: /3--а--6--у--а, так что а-субъединицы не соседствуют друг с другом. По данным многочисленных исследований, места связывания ацетилхолина, других агонистов и конкурентных антагонистов располагаются на а-субъединицах. Следовательно, существуют два места связывания для этих химических агентов. Антагонисты препятствуют активации, вызываемой агонистами, или путем прямой конкуренции за связывание с теми же участками, или за счет связывания с каким-либо другим местом и, возможно, взаимодействия с каналом per se.

Как видно из рис. 8.8, nAChR-канал имеет длину около 140 А, причем участок длиной 70 А расположен над поверхностью бислоя с наружной стороны, образуя большие ворота канала. В клетках Torpedo канал существует в виде димерных единиц, связанных друг с другом дисульфидным мостиком между 6-субъединицами с внеклеточной стороны. Часть канала, выступающая из бислоя с цитоплазматической стороны, гораздо менее протяженна; по-видимому, она взаимодействует с элементами цитоскелета, что способствует образованию плотноупакованных кластеров канальных белков в концевой пластинке. Было высказано предположение, что эти взаимодействия опосредует особый белок мол. массой 43 000. В концевой пластинке каналы могут быть собраны в кластеры с плотностью до 10000 молекул на 1 мкм2, что близко к теоретическому пределу. При взаимодействии с ацетилхолином или другими агонистами через данный участок мембраны начинает течь электрический ток, деполяризующий постсинаптическую мембрану.

Кинетическое поведение nAChR-канал а можно с успехом анализировать, если рассматривать его как аллостерический фермент, способный находиться в нескольких конформациях. Существуют как минимум три состояния, в которых может находиться канал: открытое, закрытое и инактивированное. Для индукции перехода канала из закрытого состояния в открытое, в котором он остается около 1 мс, необходимо кооперативное связывание двух молекул ацетилхолина. В инактивированиом состоянии канал остается закрытым даже в присутствии ацетилхолина. Измерения проводимости одиночного канала свидетельствуют о наличии более чем одного открытого состояния, и кинетическая модель при этом оказывается достаточно сложной. Опыты по встраиванию канала в липидный бислой показали, что липидное окружение может влиять на способность канала к переходу из одной конформации в другую.

В открытой конформации канал проницаем для катионов и небольших неэлектролитов, но не анионов. Ограничения, налагаемые на размер проходящих молекул, позволяют судить о размерах наиболее узкой части канала. Соответствующие данные представлены на рис. 8.9 вместе с данными для двух других каналов. Радиус небольшого негидратированного иона, способного проходить через канал, является разумной оценкой предельных размеров канала. Непроницаемость канала для анионов и в три раза ббльшую проницаемость для катионов, чем для незаряженных молекул, можно объяснить электростатическими взаимодействиями, возникающими благодаря присутствию в воротах канала биполярных или отрицательно заряженных групп. Селективность канала по отношению к одно- и двухвалентным катионам невелика, но согласуется с моделью, в которой ионы даже внутри канала взаимодействуют главным образом с молекулами воды, а не с элементами собственно канала. Хотя размеры nAChR-канала относительно велики, он все же слишком мал, чтобы через него могли проходить полностью гидратированные ионы. Внутренняя полость канала должна содержать группы, которые могли бы легко заменить утраченные при дегидратации молекулы воды.

О молекулярной структуре этого канала известно больше, чем о структуре какого-либо иного канала. И все же, к сожалению, не выработано единой точки зрения на то, как построен данный канал, хотя было создано много достаточно детальных моделей. Большой вклад в исследование этого вопроса внесли работы с использованием методов молекулярной генетики. Так, при помощи клонирования генов каждой из субъединиц nAChR-канала из нескольких источников были определены аминокислотные последовательности этих субъединиц, анализ которых выявил наличие высококонсервативных участков. В качестве потенциальных трансмембранных а-спиралей было идентифицировано до семи различных сегментов. Наиболее интересен один из них, обозначаемый как М5 или МА; он может образовывать амфифильную спираль с заряженными группами, расположенными с одной стороны. Большинство исследователей полагают, что узкая часть канала, пронизывающая бислой, построена из субъединиц, каждая из которых образует а-спираль. Ансамбль а-спиралей формирует центральную пору. Первым кандидатом на эту роль является амфифильная спираль, хотя модельные исследования с грамицидином А с очевидностью показали, что наличие заряженных групп не является необходимым условием для образования наполненного водой катионселективного канала. Экспериментальные данные о прямом участии амфифильной спирали в формировании канала отсутствуют; даже вопрос о том, является ли эта спираль трансмембранной, не решен окончательно. Имеются данные, что в формировании канала участвует другая спираль, М2. Эти данные были получены при изучении связывания с каналом неконкурентных антагонистов и с помощью молекулярнно-генетических методов. Хотя спираль М2 не является амфифильной, она может образовывать канал, аналогичный грамицидиновому или аламетициновому. Отметим, что другие члены группы нейромедиаторных рецепторов не имеют участков, аналогичных амфифильной спирали никотинового ацетилхолинового рецептора.

В работах Нума и др. впервые были продемонстрированы возможности применения сайт-специфического мутагенеза при исследовании подобного рода систем. Гены, кодирующие каждую из четырех субъединиц канала, клонировали в cos-клетках обезьяны и ооцитах Хепорш и наблюдали экспрессию функциональных каналов в плазматической мембране. Для изучения работы таких каналов очень ценным оказались методы регистрации токов через одиночные каналы. Есть надежда, что с развитием подобных экспериментальных подходов мы сможем получить ответы на многие давно интересующие нас вопросы о строении каналов. Использование поликлональных и моноклональных антител поможет выявить те участки полипептидов, которые ответственны за связывание ацетилхолина, а также участки, формирующие собственно канал. В настоящее время большинство исследователей полагают, что этот канал образуется из а-спиралей, как аламетициновый канал. Те же представления легли в основу модели Na +-канала.

ПОТЕНЦИЛЗАВИСИМЫЙ НАТРИЕВЫЙ КАНАЛ

Потенциалзависимый натриевый канал обеспечивает быстрое увеличение натриевой проводимости, ответственное за фазу деполяризации при развитии потенциала действия в нервных и мышечных клетках. Этот канал был очищен до гомогенного состояния из нескольких источников, в частности из мозга крысы, скелетных мышц млекопитающих, сердца цыпленка и электрического органа ската Electrophorus electricus.

Очищенные каналы из Elektrophorus electricus и сердца цыпленка содержат единственную гликопротеиновую субъединицу с мол. массой -260000, в то время как каналы, выделенные из тканей млекопитающих, содержат еще одну или две меньшие субъединицы с мол. массой от ЗЗООО до 38 000. Большую часть из этих очищенных препаратов каналов удалось встроить в плоские мембраны, при этом они сохраняли присущие им in vivo электрофизиологические и фармакологические характеристики. Для успешной реконструкции канала, выделенного из тканей млекопитающих, необходим по меньшей мере один из небольших ассоциированных белков.

Натриевые каналы взаимодействуют с различными токсинами, в частности с тетродотоксином, сакситоксином и а-токсином скорпиона, которые очень прочно связываются с канальными белками и могут использоваться при количественных биохимических измерениях. Присутствие этих токсинов очень важно как для биохимической очистки каналов, так и для изучения их работы in vivo. Как и канал концевой пластинки, натриевые каналы распределены в плазматической мембране не равномерно, а собраны в кластеры. В мышечных клетках Na +-каналы сконцентрированы в районе концевой пластинки вместе с nAChR-каналами.

Нума с соавторами клонировали гены, кодирующие белки натриевых каналов из Electrophorus и главную субъединицу канала из мозга крысы, и определили их нуклеотидную последовательность. Было показано, что белок натриевого канала из Electrophorus содержит 1820 аминокислотных остатков, организованных в четыре повторяющиеся гомологичные единицы. По мнению разных авторов, каждый гомологичный участок содержит 4, 6 или 8 трансмембранных а-спиралей. Некоторые из этих предполагаемых трансмембранных спиралей амфифильны и аналогичны постулированным для nAChR-канала. Имеются экспериментальные данные о том, что карбоксильный конец полипептидной цепи локализован на цитоплазматической поверхности; сообщалось также, что амфифильная 54-спираль является внецитоплаз-матической. Однако никакой дополнительной информации, позволяющей подтвердить предложенные топологические модели, не существует. Нет также данных о том, какие участки полипептида непосредственно вовлечены в образование поры. Различные модели натриевого канала концептуально близки к моделям канала концевой пластинки в том отношении, что канал per se состоит из кластера а-спиралей, образующих центральную пору. В этом случае, однако, вместо пяти различных субъединиц мы имеем четыре гомологичных домена единственной субъединицы. По всей вероятности, специфичные группы организованы в канале таким образом, что образуется «селективный фильтр».

Предельные размеры канала можно оценить, используя метод «молекулярного сита», однако при этом нельзя объяснить селективность канала по отношению к достаточно малым ионам. На рис. 8.10 приведен профиль свободной энергии для диффузии ионов Na+ через канал. Если лимитирующей стадией является дегидратация, то параметром, определяющим высоту энергетического барьера, будет геометрия тех компонентов, которые временно заменяют воду. Для К+ положение соот-

ветствующих групп не будет оптимальным, поскольку этот ион несколько больше по диаметру, а потому энергетический барьер будет выше. Напротив, для К+-селективных каналов соответствующий энергетический барьер будет минимален именно для ионов К +.

В последнее время было построено также много моделей, описывающих регуляцию работы канала при помощи трансмембранного потенциала. В регуляции, без сомнения, участвует изменение заряда белка в ответ на наложение электрического поля. Однако никаких данных о том, какие именно участки полипептида образуют ворота или отвечают на изменение напряжения, не существует. Высказывается предположение, что это может быть амфи-фильная 54-спираль.

Данные об аминокислотной последовательности натриевого канала свидетельствуют о том, что он относится к группе потенциал-зависимых каналов. В эту же группу входят калиевый канал из Drosophila и дигидропиридиновый калиевый канал из скелетных мышц кролика. Все эти белки содержат амфи-фильный положительно заряженный сегмент, аналогичный S4-cer-менту натриевого канала. Это еще раз подтверждает вывод о том, что данный сегмент участвует в регуляции работы канала, отвечая на изменение напряжения на мембране. Отметим, что как натриевый канал из тканей млекопитающих, так и кальциевый канал следующий раздел) имеют субъединицы, функции которых неизвестны.

КАЛЬЦИЕВЫЙ КАНАЛ

Са2 +-селективные каналы очень широко распространены в возбудимых клетках -- нервных и мышечных, а также в большинстве других типов клеток. Некоторые Са2 +-каналы отвечают на изменение напряжения на мембране, а работа других регулируется опосредованно с помощью рецепторов. Обычно концентрация ионов Са2+ в цитоплазме не превышает 10"7 М, что в 10000 раз ниже, чем концентрация ионов Са2+ вне клетки. Из-за этих условий и в отличие от Na + - и К + -каналов открывание Са2 + -канала может приводить к значительным изменениям концентрации этого иона в цитоплазме, что в свою очередь индуцирует разнообразные биохимические события. Например, потенциалзависимое увеличение концентрации ионов Са2+ в цитоплазме приводит к высвобождению нейромедиаторов.

Исходя их фармакологических данных, была проведена классификация Са2+-каналов. Для очистки и дальнейшей харктеристики каналов очень полезными оказались органические блокирующие агенты с высоким сродством к каналам. Единственный класс Са2 + -каналов, охарактеризованных биохимически, -- это потенциалзави-симые каналы, которые блокируются различными органическими соединениями, в частности производными дигидропиридииа. Эти каналы были выделены из сердечной и скелетной мышц и оказались одинаковыми. Они состоят как минимум из двух субъединиц с мол. массой 140000 и 30000. Большая субъединица была клонирована и секвенирована и оказалась структурно близка к потенциалзависимому натриевому каналу.

Появляется все больше данных, свидетельствующих о сходстве структуры различных каналов и пор. В основе всех этих систем лежит заполненная водой пора, выстланная изнутри полярными группами. Пора может быть образована или а-спиральными, или 0-структурными элементами. Чтобы транспорт осуществлялся с высокой скоростью, в канале не обязательно должны присутствовать места связывания, обладающие высоким сродством к переносимым веществам, поскольку селективность определяется высотой энергетических барьеров, а не глубиной впадин. Селективность каналов можно в большинстве случаев объяснить тем, что в нескольких ключевых местах располагаются специфические аминокислотные остатки, определяющие характер тех веществ, которые могут проходить через канал. Возможно, воротные механизмы различных каналов также имеют много общего, но экспериментальные данные по этому поводу пока отсутствуют.

Как мы увидим позже, аналогичные структурные свойства можно обнаружить и у других транспортных белков.

Некоторые унипортеры, симпортеры и антипортеры

К настоящему времени достаточно хорошо охарактеризовано несколько систем, катализирующих транспорт одного или более растворимых веществ. При этом скорость переноса с помощью этих белковых комплексов гораздо ниже, чем даже через наиболее «медленные» каналы. Мы рассмотрим переносчик глюкозы и анионный переносчик из мембраны эритроцита, лактозопермеазу из Е. coli и группу митохондриальных переносчиков. Транспортные функции этих белков весьма разнообразны: оии катализируют облегченную диффузию одного какого-то вещества, симпорт Н + и сахара, в результате чего происходит накопление сахара в клетке, и антипорт растворенного вещества. Отметим некоторые общие свойства этих процессов.

Страницы: 1, 2, 3, 4, 5


бесплатно рефераты
НОВОСТИ бесплатно рефераты
бесплатно рефераты
ВХОД бесплатно рефераты
Логин:
Пароль:
регистрация
забыли пароль?

бесплатно рефераты    
бесплатно рефераты
ТЕГИ бесплатно рефераты

Рефераты бесплатно, реферат бесплатно, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.