бесплатно рефераты
 
Главная | Карта сайта
бесплатно рефераты
РАЗДЕЛЫ

бесплатно рефераты
ПАРТНЕРЫ

бесплатно рефераты
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

бесплатно рефераты
ПОИСК
Введите фамилию автора:


Нейрохимические основы памяти

p align="left">Участие ионов кальция в процессах, связанных с механизмами памяти, не ограничивается активацией рецептора глутамата. К числу других реакций относится активация в нервной клетке специфических элементов, осуществляющих фосфорилирование белков -- протеинкиназ. Некоторые из протеинки-наз активируются ионами кальция при обязательном участии таких характерных для состава мембран соединений, как фосфоинозитиды, фосфоинозитолы и диацилглицерол, которые, как известно, образуются при прохождении нервного импульса одновременно с изменением концентрации кальция. Одна из протеинкиназ -- протеинкиназа С, чья активность модифицируется ионами кальция и фосфолипидами, фосфорилирует ряд белков, содержащихся в синаптических мембранах, в том числе белок В-50. С фосфорилированием этого белка тесно связан уровень фосфорилирования фосфоинозитидов, которые, как полагают, оказывают значительное влияние на заряд и состояние ионных каналов постсинаптической мембраны и, следовательно, на степень "проторенности" синапса.

Дополнительным свидетельством значения фосфорилирования протеинкиназой С белка В-50 служат результаты экспериментов с долговременной синаптической потенциацией нейронов гип-покампа. Феномен долговременной синаптической потенциа-ции заключается в том, что после длительного высокочастотного раздражения нервной клетки ее ответ на приходящие импульсы в течение довольно продолжительного времени оказывается усиленным. Это явление в настоящее время служит одной из основных моделей нейронной пластичности, которая, как было сказано, в свою очередь используется для изучения механизмов памяти. В ряде экспериментов различных исследователей было показано, что во время долговременной синаптической потенциации нейронов гиппокампа происходит резкая активация фосфорилирования белка В-50 протеинкиназой С.

Весьма перспективной представляется новая проблема, основанная на активации ионами кальция кальмодулин-зависи-мой протеинкиназы II. Последняя замечательна тем, что после первичной активации она способна к аутофосфори-лированию, поддерживающему далее ее активность и активность вновь синтезируемых молекул этого фермента в течение очень длительного времени. К3П II локализована в синапсах и может таким образом участвовать в механизмах длительного изменения проводимости данного синапса.

В последнее время внимание ряда исследователей привлекает возможная роль ганглиозидов в кальций-зависимых синаптических процессах. Ганглиозиды способны, в частности, активно участвовать в стимуляции как глутаматных рецепторов коры и гиппокампа. При этом необходимым условием является образование комплексов ганглиозидов с ионами кальция.

Изменение состояния синаптического аппарата при прохождении нервного импульса может влиять также еще на одну группу биохимических процессов -- синтез циклических нуклеотидов. При этом может происходить как активация, так и ингибирование ферментов этой системы. Модификация деятельности циклазной системы может осуществляться путем прямого воздействия через рецептор медиатором или комедиатором на аденилат или гуанилатииклазу. Активация циклазных систем связана с увеличением концентрации ионов кальция, так как некоторые циклазы являются кальций-зависимыми ферментами. Синтезированные в результате циклические нуклеотиды -- цАМФ и цГМФ, в свою очередь, активируют некоторые протеинкиназы, оказывающие влияние на фосфорилирование ряда белков.

Изменение интенсивности фосфорилирования ряда белков, в частности белков хроматина, РНК-полимеразы и рибосом может влиять на синтез некоторых нейроспецифических белков. Наиболее исследованы два белка -- белок S-100 и белок 14-3-2. Оба белка считаются нейроспецифическими, так как их содержание в головном мозге значительно превышает количество, обнаруживаемое в любом другом органе. При этом показано, что белок 14-3-2 содержится главным образом в нейронах, a S-100 -- в клетках алии. Кроме того, S-100 обнаружен в синапсах, что дает основание полагать, что он участвует в формировании связей между нейронами.

Было показано, что содержание белка S-100 в нейронах гиппокампа начинает возрастать примерно через час после обучения, достигает максимума через 3-6 ч и через несколько суток возвращается к исходному уровню. Сходная динамика обнаружена и для процесса обновления белка 14-3-2, оцениваемого по скорости включения в него меченого лейцина.

Свидетельством в пользу того, что нейроспецифические белки принимают участие в процессах памяти, служат эксперименты, в которых показано, что введение антисыворотки к белку S-100 в желудочки мозга нарушает обучение крыс. Спонтанное поведение, в частности двигательная активность, при этом не изменялась. Кроме того, необходимо иметь в виду общеизвестные факты, говорящие о том, что подавление синтеза белка в мозге ведет к нарушению фазы консолидации и формирования ООП и ДПП. Таким образом, есть все основания считать, что в основе продолжительных типов ООП лежит синтез определенных нейроспецифических белков, которые могут встраиваться в синоптические мембраны.

К числу процессов, способных опосредованно влиять на обучение, относится также модификация синтеза нуклеиновых кислот. В недавнем прошлом среди исследователей было распространено представление о том, что запоминаемая информация хранится в клетках мозга в виде последовательности нуклеотидов во вновь синтезированных нуклеиновых кислотах. В связи с этим ссылались на большое количество экспериментальных данных, свидетельствующих о том, что при обучении происходит увеличение синтеза некоторых фракций РНК, в том числе таких, состав которых отличается от последовательности нуклеотидов, характерной для РНК необученных животных. По современным представлениям, однако, эти данные объясняются не синтезом принципиально новой РНК, последовательность нуклеотидов в которой не была закодирована в клетке, а включением, экспрессией участков генома, ответственных за описанный синтез нейроспецифических белков, связанных с обучением.

Экспрессия определенной совокупности генов лежит в основе структурно-функциональной организации любой специализированной клетки многоклеточного организма. Неудивительно, что при функциональной активации нервной системы, например во время обучения, наблюдается интенсификация процессов синтеза РНК и белков в клетках мозга. Сейчас интенсивно изучается вопрос о том, в какой мере происходящие при обучении изменения в экспрессии генов связаны с процессом фиксации и какова молекулярная природа этого процесса, включают ли эти изменения активацию транскрипции ранее "молчащих" генов или они ограничены чисто количественными сдвигами в уровне экспрессии генов.

Неизвестно, связана ли фиксация разнокачественной информации с экспрессией разных генов или существует универсальный для всех пластичных нейронов механизм "записи". Основной трудностью на пути исследования этих вопросов является слабая изученность лежащего в их основе вопроса о морфологическом и нейрофизиологическом субстрате памяти. Исследования специфической для обучения экспрессии генов на целом мозге или его крупных подразделениях неминуемо упирается в проблему "иголки в стоге сена": они затрагивают огромные популяции нервных клеток, функциональная активность которых необходима не для процесса фиксации памяти как такового, а для так называемых неспецифических атрибутов процесса обучения.

Вычленение процесса фиксации памяти из этого общего биологического контекста на уровне целого организма пока трудно осуществить. Неудивительно, что основные успехи в понимании молекулярной природы механизма "записи" информации в нервных клетках достигнуты на простых клеточных моделях обучения, связанных с использованием явлений пластичности в изолированных элементах нервной системы.

Наиболее изученной системой такого рода является моносинаптическая дуга безусловного рефлекса втягивания жабры и сифона в ответ на слабое тактильное раздражение сифона у брюхоногого моллюска аплизии. Амплитуда этого рефлекса кратковременно повышается при однократной и долговременно -- при повторяющейся болевой стимуляции области головы или хвоста. В обоих случаях сенситизация связана с повышением эффективности синапсов между сенсорными нейронами сифона и мотонейронами жабры и сифона. С удлинением периода болевой стимуляции продолжительность сохранения сенситизации также постепенно увеличивается: кратковременная сенситизация "перерастает" в долговременную.

Обе формы сенситизации имеют общую морфологическую и нейрофизиологическую основу, но их молекулярные механизмы принципиально различаются. В основе кратковременной сенситизации лежит независимое от текущей экспрессии генов и обратимое повышение уровня фосфорилирования группы белков в сенсорных нейронах сифона, обусловленное кратковременной активацией аденилатциклазы, сопряженной с пресинаптическими рецепторами 5-НТ. Природа и функция большинства этих белков неизвестна, однако одним из них является белок 5-НТ-чувствительного канала К+, уменьшение проводимости которого и составляет основу механизма сенситизации. При долговременной сенситизации фосфорилирование тех же белков повышено в течение срока, соответствующего длительности самой сенситизации, причем этот эффект, как и сама сенситизация, полностью блокируется при ингибировании текущей экспресии генов в период обучения. Анализ индивидуальных, вновь синтезированных при обучении белков методом двумерного электрофореза позволил обнаружить избирательное повышение скорости синтеза нескольких белков, но их природа и функциональная роль пока неизвестны.

Одной из форм долговременного хранения информации в индивидуальных нейронах, так же как в целой центральной нервной системе, является устойчивое изменение в активности нейромедиаторных систем в ответ на адекватную синаптическую стимуляцию. При синаптической стимуляции симпатических нейронов наблюдается устойчивое и многократное повышение уровня мРНК тирозингидроксилазы и уменьшение уровня мРНК препротахикинина. Аналогично, адекватная синаптическая стимуляция приводит к устойчивому повышению уровня мРНК тирозингидроксилазы в норадренергических нейронах голубого пятна и дофаминергических нейронах черной субстанции.

Полученные при исследовании простых нейронных систем данные касаются зачаточных механизмов мнемонической функции, свойственных многим, если не всем нейронам, на разных уровнях центральной и периферической нервной системы. Их, однако, явно недостаточно для объяснения таких свойств долговременной памяти высших животных, как огромное информационное разнообразие и чрезвычайная стойкость.

Пожизненная долговременная память

Все приведенные положения, касающиеся изменения состояния некоторых белков и моделируемые, в частности, с помощью долговременной синаптической потенциации нейронов гиппокампа, касаются лишь относительно кратковременных процессов, сопоставимых по продолжительности с ООП, но не с ДПр. Длительность всех перечисленных нейрохимических модификаций не превышает нескольких суток. В тех же случаях, когда след сохраняется на протяжении многих суток, месяцев и даже лет, происходит, по-видимому, не модификация существующих белков, а постоянный синтез новых биополимеров, для чего необходимы устойчивые перестройки в функционировании участков генома.

Включение синтеза новых белков может осуществляться посредством того же фосфорилирования белков хроматина, РНК-полимеразы или рибосомы. Значение синтеза белков для протекания процесса консолидации и формирования долговременной памяти общепризнанно. Доказательством этого служит, во-первых, то, что эти процессы нарушаются ингибиторами белкового синтеза, а, во-вторых, что в период, следующий за обучением, когда сначала упрочиваются продолжительные формы ООП, а затем Происходит закрепление следа в ДП, наблюдается интенсификация процессов, связанных с синтезом белков. К таким процессам относится интенсивное включение лейцина и фукозы в некоторые белки, в частности в гликопротеиды. По данным Г. Маттиеса, интенсификация синтеза белка в период, последующий обучению, имеет два временных максимума: первый -- через 1-1,5 ч после обучения -- связан с синтезом растворимых, а второй -- через 6-10 ч -- с синтезом нерастворимых белков. Возможно, что на первом этапе происходит модификация белков, связанных с продолжительной формой ООП, а на втором -- с ДПП.

Очевидно, однако, что просто разовым синтезом белков с новой структурой нельзя объяснить закрепление ДПП. Наиболее стабильные из известных белков имеют период полураспада, не превышающий нескольких месяцев, что явно несопоставимо с продолжительностью жизни высших животных. Поэтому для того, чтобы след мог сохраняться в ДПП в течение нескольких, а иногда многих лет, требуется одновременный запуск какой-то устойчивой системы для постоянного обновления соединений данного типа. Какие механизмы способны обеспечить функционирование систем такого рода? Прежде всего, это необратимые перестройки генного аппарата, когда в результате репрессии/экспрессии участков генома часть генов выключается, а часть включается или приводится в состояние готовности к быстрому включению. Такие процессы обеспечивают, например, дифференцировку клеток в ходе онтогенеза и в принципе могут протекать при формировании ДПП.

Перестройка регуляторной системы генома возможна на уровне ДНК посредством вырезания и транслокации участков ДНК, амплификации различных участков и ковалентной модификации нуклеотидов метилированием и деметилированием. Первые две группы процессов связаны с синтезом ДНК. Р.Касол и соавторы показали, что у золотых рыбок при внутрижелудочко-вом введении питозинарабинозы быстро, сильно и устойчиво происходит подавление включения 3Н-тимидина в ДНК мозга, но не обнаруживается сколько-нибудь заметного влияния на формирование условно-рефлекторного навыка. Авторы работы сделали из этого вывод, что синтез ДНК не является необходимым для формирования и сохранения памяти. Следует отметить, однако, что этот вывод не вполне вытекает из условий и результатов их работы. Действительно, на приводимых авторами радиоавтографах мозга золотых рыбок видно, что преобладающий вклад в общее включение введенного в мозговые желудочки меченого предшественника в ДНК мозга вносят сильно метящиеся клетки в структурах, окружающих место инъекции. В этом случае подавление суммарного включения предшественника на 95% не исключает возможности гораздо меньшего подавления синтеза ДНК в структурах, наиболее удаленных от места инъекции. Относительной сохранностью синтеза ДНК и можно объяснить успешное обучение животных и сохранность навыка.

К выводу о важной роли синтеза ДНК для формирования памяти пришли К.Райнис и соавторы, исследовавшие влияние ингибиторов на формирование и сохранность памяти у мышей. При этом 5-иод-2-дезоксиуридин ухудшал память только при введении за два часа до обучения, а гидроксиламин необратимо нарушал воспроизведение памяти даже при введении через три недели после обучения. Более того, показано, что выработка условных рефлексов пассивного избегания у мышей сопровождается повышением включения меченого предшественника в ДНК различных областей неокортекса, причем это включение не связано с делением и миграцией нервных клеток и преимущественно локализовано в околоядрышковом хроматине. Существенными недостатками этой чрезвычайно впечатляющей по совокупности результатов серии исследований можно считать использование недостаточно специфических для синтеза ДНК ингибиторов и отсутствие удовлетворительных биохимических контролей.

Несколько лет назад появилось сообщение о том, что важную роль в формировании памяти может играть процесс обратной транскрипции. Авторы этого сообщения обнаружили, что в мозге и других тканях крыс присутствует РНК-зависимая ДНК-полимеразная активность. В гиппокампе крыс быстрообучающейся генетической линии эта активность существенно выше, чем у крыс медленно обучающейся линии; более того, процесс выработки пищедобывательного условного рефлекса сопровождается возрастанием этой активности в гиппокампе почти в два раза. По мнению авторов, роль обратной транскриптазы при формировании памяти может состоять в избирательной амплификации специфически активных при обучении генов.

Выработка пищевых и оборонительных условных рефлексов у крыс сопровождается резкой интенсификацией синтеза ДНК в неокортексе. Этот эффект максимально выражен непосредственно после обучения и быстро затухает в последующие часы. Индуцированный обучением синтез ДНК весьма избирателен: он затрагивает главным образом малоповторенные в геноме последовательности ДНК. К сожалению, природа и функциональная роль этих последовательностей и самого избирательного синтеза ДНК остается пока невыясненной. Не исключено, что избирательное включение меченых предшественников при обучении в определенные последовательности ДНК обусловлено процессами репарации, сопряженными с активацией транскрипции в содержащих эти последовательности участках хроматина. Известно, например, что обучение сопровождается повышением активности ДНКаз в мозге крыс.

При выработке условного рефлекса активного избегания Л.Скарони и соавторы наблюдали сходное с уже описанным повышение синтеза ДНК в мозге крыс. Однако при хронической выработке сложного пищедобывательного навыка наблюдали уменьшение синтеза ДНК в большинстве отделов мозга. Исследование уровня синтеза ДНК в клетках разного типа и различных субклеточных органеллах показало, что индуцированные обучением изменения затрагивают ядерную и митохондриальную ДНК нейронов, причем последнюю -- в большей степени. В ядерной ДНК эти изменения в разной степени затрагивают разные последовательности ДНК. По-видимому, разнонаправленные изменения в общем уровне синтеза ДНК в мозге при различных типах обучения связаны с тем, что этот показатель является слишком сложной интегральной характеристикой метаболизма ДНК, складывающейся из многих локальных эффектов, каждый из которых зависит от различных протекающих в мозге процессов. Известно, например, что уровень синтеза ДНК в мозге крыс повышается при депривации парадоксального сна, а также, что он испытывает закономерные циркадные колебания, выраженность которых зависит от времени года. Существенность синтеза ДНК для формирования памяти подтверждается также тем, что оба процесса подавляются при действии электрошока.

¦ Все эти данные свидетельствуют о возможном участии метаболизма ДНК в процессах формирования и хранения нейрологической памяти. К сожалению, механизмы этого участия пока остаются практически неизученными.

Энзиматическое метилирование остатков цитозина в ДНК клеток животных рассматривается как один из основных механизмов регуляции дифференциальной экспрессии генов. Для огромного количества генов обнаружена обратная корреляция между степенью метилирования остатков цитозина в области промотора и экспрессией.

Степень метилирования ДНК в различных отделах головного мозга и более тонких подразделениях каждого отдела неодинакова. Дексаметазон вызывает повышение, а ареколин -- уменьшение степени метилирования ДНК в мозге. Степень метилирования ДНК в мозге крыс возрастает при старении.

При выработке сложного инструментального пищедобывательного условного рефлекса у крыс наблюдали обратимое повышение уровня метилирования ДНК в гиппокампе и неокорте ксе, а при выработке простого пищевого условного рефлекса -- также и в мозжечке. Отмеченные изменения уровня метилирования затрагивают главным образом ядерную ДНК нейронов. Значение выявленных обратимых изменений в уровне метилирования ДНК мозга при обучении остается неизвестным. Представляется маловероятным, что они непосредственно связаны с регуляцией транскрипции генов, поскольку, как показали многочисленные исследования последних лет, активность генов мало зависит от общего уровня их метилирования и определяется скорее состоянием небольшого числа "критических" для транскрипции потенциально метилируемых участков в промоторной области. Сами масштабы и сроки обнаруженных сдвигов в метилировании ДНК при обучении свидетельствуют о том, что они связаны с сопоставимыми глобальными процессами синтеза ДНК и/или структурой реорганизации хроматина. В связи с этим было бы интересным выяснить возможную связь между изменением в уровне метилирования ДНК мозга и синтеза в нем метаболически лабильной ДНК. Следует отметить, однако, что вновь синтезированная в мозге крыс ДНК, индуцированная обучением, существенно не отличается от предшествовавшей ДНК по уровню метилирования. Приходится констатировать, что механизмы обратимого повышения метилирования ДНК при обучении и функциональная роль этого процесса пока остаются загадочными.

Основой долговременной памяти могут служить не только структурные изменения внутри ДНК. Существуют предположения, что устойчивое состояние, связанное с экспрессией либо депрессией определенных генов, формируется благодаря процессам, описываемым на базе, например, модифицированных моделей Жакоба и Моно. Конкретный процесс может, в частности, выглядеть следующим образом. В исходном состоянии транскриптон, ответственный за синтез данного белка, выключен определенным репрессором. В результате какого-то воздействия, например вследствие процессов, происходящих в синаптическом аппарате, происходит экспрессия транскриптона и синтез интересующего нас белка. После прекращения воздействия участок генома может снова оказаться репрессированным и синтез прекратится. Но в ряде случаев синтезируемый белок оказывается способным связывать репрессор своего оперона. Тогда возникает устойчивый цикл, который уже не прерывается после прекращения воздействия.

Такая схема объясняет, например, почему ингибиторы синтеза белка и ДНК не нарушают тех процессов, которые уже прошли консолидацию и зафиксированы в долговременной памяти. Для того чтобы прервать запущенный цикл, требуется прекратить синтез биополимеров полностью и на очень длительный срок, а это трудно совместить с жизнью животного, к тому же такие ингибиторы в настоящее время неизвестны. Если же синтез белка продолжается, хотя бы и с небольшой интенсивностью, цикл не может быть необратимо подавлен.

Первые экспериментальные указания на справедливость моделей такого типа получены при исследовании вентрального гиперстриатума во время формирования условных рефлексов пассивного избегания у цыплят. В мозге высших животных, как и в ЦНС аплизии, кратковременные и долговременные формы пластичности могут иметь общую структурную и отчасти молекулярную основу: существенным компонентом механизма длительной посттетанической потенциации в гиппокампе млекопитающих является фосфорилирование протеинкиназой С пресинаптического белка F1, который, как показало изучение первичной структуры мРНК, идентичен белку GAP-43 -- важнейшему элементу процессов роста и регенерации нервных окончаний. Экспрессия гена GAP-43 очень активна в развивающемся мозге в период аксогенеза. В мозге взрослого человека ген GAP-43 наиболее активно экспрессируется в ассоциативных зонах неокортекса, гораздо ниже -- в проекционных и моторных зонах, умеренно -- в мозжечке, хвостатом ядре, покрышке, гиппокампе и цингулярной коре. В мозге взрослых крыс местами наиболее активной экспрессии гена GAP-43 являются гиппокамп и энторинальная кора, тогда как в неокортексе, мозжечке и стволовых структурах число экспрессирующих нейронов очень невелико. Содержащие GAP-43 аксоны образуют редкую, но распределенную по всему мозгу синаптическую сеть, которая, возможно, и является объектом реорганизации при всевозможных процессах долговременной пластичности.

Первые часы формирования долговременной памяти весьма уязвимы к действию агентов, подавляющих текущую экспрессию генов, тогда как на более поздних этапах она становится относительно устойчивой, Первичной мишенью действия ингибиторов на ранние этапы формирования памяти вряд ли может быть экспрессия поздних эффекторных генов GAP-43 или тирозингидроксилазного, поскольку повышение уровня их экспрессии обычно наблюдается на более поздних этапах. Маловероятно также, что включение различных эффекторных механизмов долговременной пластичности является прямым ответом на синаптическую активацию. Промежуточным звеном между этими процессами, объясняющими чувствительность ранних этапов формирования памяти к действию ингибиторов, является, вероятно, быстрая и обратимая активация так называемых немедленных ранних генов. Активация этих генов является наиболее ранним и быстропроходящим ответом клеточного ядра различных клеток на действие всевозможных внешних стимулов. Более поздним последствием этого процесса является активация экспрессии эффекторных генов, обеспечивающая долговременный адаптивный ответ клетки на действие внешнего стимула.

Страницы: 1, 2, 3, 4


бесплатно рефераты
НОВОСТИ бесплатно рефераты
бесплатно рефераты
ВХОД бесплатно рефераты
Логин:
Пароль:
регистрация
забыли пароль?

бесплатно рефераты    
бесплатно рефераты
ТЕГИ бесплатно рефераты

Рефераты бесплатно, реферат бесплатно, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.