бесплатно рефераты
 
Главная | Карта сайта
бесплатно рефераты
РАЗДЕЛЫ

бесплатно рефераты
ПАРТНЕРЫ

бесплатно рефераты
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

бесплатно рефераты
ПОИСК
Введите фамилию автора:


Концепции развития современных технологий и энергетики

b>2.2 Технологические возможности реализации высокой информационной плотности

Большинство моделей ЭВМ, от мини-ЭВМ до сложных вычислительных комплексов и систем, содержат внешние запоминающие устройства, которые базируются в основном на магнитной записи. Прогнозы специалистов показывают, что на ближайшую историческую перспективу устройства магнитной записи останутся доминирующими на мировом рынке информационной техники.

Себестоимость внешних запоминающих устройств по сравнению с себестоимостью других устройств современных ЭВМ, относительно велика. Поэтому их совершенствование направлено, с одной стороны, на снижение себестоимости, а с другой - на повышение качества записи и воспроизведения информации.

С развитием средств вычислительной техники растет и будет расти спрос на запоминающие устройства небольших размеров, способные хранить большой объем информации. В этой связи проблема повышения информационной плотности записи - одна из важнейших в современных запоминающих устройствах большой емкости.

В запоминающих устройствах на подвижном магнитном носителе, где основное - это накопление информации, фактором первостепенной важности является поверхностная информационная плотность записи, определяемая количеством информации, приходящейся на единицу площади поверхности рабочего слоя носителя записи. Поверхностная информационная плотность записи зависит от плотности записи вдоль одной дорожки (продольной плотности) и числа самих дорожек на единицу длины в поперечном относительно движения носителя направлении (поперечной плотности). Теоретически доказано, что продольная плотность записи информации на магнитном носителе может быть равной примерно 20000 бит/мм.

Если в настоящее время в лучших накопителях на магнитных дисках реализована продольная плотность около 5000 бит/мм, то становится понятным, какие возможности еще не реализованы.

Магнитная запись с перпендикулярным намагничиванием, когда перемагничивание рабочего слоя осуществляется в его перпендикулярной плоскости, обеспечивает существенное повышение информационной плотности записи. Так, в лабораторных образцах накопителей уже достигнута продольная плотность, составляющая более 10 000 бит/мм.

Оценим плотность записи, которую можно реализовать, используя элементную базу, необходимую для магнитной записи. Современной технологии вполне под силу изготовление магнитных элементов шириной около 1 мкм. Толщина такого работоспособного элемента может быть гораздо меньше 0,1 мкм (известны магнитные преобразователи с магнитным элементом толщиной менее 0,1 мкм, позволяющие получить продольную плотность записи более 10000 бит/мм). Следовательно, площадь поперечного сечения магнитного элемента, который может быть рабочим элементом основного полюса магнитной головки для записи составляет 0,1 мкм2. Минимальный диаметр светового пятна в оптических запоминающих устройствах равен примерно 1 мкм, что соответствует площади, приблизительно равной 1 мкм2. Теперь становится понятным, что реальная элементная база при магнитной записи позволяет реализовать информационную плотность на порядок выше предельно возможной плотности в оптических накопителях.

Современная технология позволяет изготавливать тонкопленочный элемент, ширина либо длина которого составляет примерно 1 мкм, что более чем на порядок меньше размера элемента серийно изготавливаемых магниторезистивных преобразователей. Существенное уменьшение толщины магниторезистивного элемента даже с использованием самых перспективных технологических приемов сопряжено с нарушением однородности по толщине, что влечет за собой изменение и электрических, и магнитных свойств. Технология сегодняшнего дня позволяет изготавливать магниторезистивный элемент, минимальное поперечное сечение которого составляет 0,030 мкм2, что в принципе дает возможность воспроизвести информацию, записанную с поверхностной плотностью около 33 бит/мкм2. Такая плотность приблизительно на порядок меньше соответствующей предельной плотности, к которой допускает приблизиться реальный магнитный носитель - с кобальт-хромовым рабочим слоем (напомним: она составляет 400 бит/мкм2). Если принять во внимание технологические возможности ближайшего будущего, когда линейный размер элемента уменьшится примерно на порядок, то магниторезистивный преобразователь с таким элементом позволит воспроизвести информацию, записанную с поверхностной плотностью, приближающейся к 400 бит/мкм2.

Это означает, что в обозримом будущем магниторезистивный преобразователь, опираясь на перспективную технологию, должен догнать магнитный носитель, и тогда их предельные характеристики плотности сравняются. При этом следует помнить, что предельные возможности и реальные устройства - это не одно и то же. В то же время без реальных возможностей не бывает и реальных устройств. Другое дело, что между ними, как правило, лежит непроторенный путь, который при недостаточно объективной оценке каких бы то ни было возможностей может оказаться безысходным. В данном случае правильный путь может выбрать практик-разработчик, каждое действие которого обосновано научным пониманием решаемой им проблемы,

2.3 Проблемы воспроизведения живого образа

Коснемся также важной области применения магнитной записи в различных аппаратах записи и воспроизведения звука и изображения. С относительно недавнего времени все чаще можно встретить и в научно-технической, и в популярной литературе термины: "цифровая звукозапись", "цифровой магнитофон" и т.п. Невольно может возникнуть вопрос: какое отношение к звукозаписи либо видеоизображению имеет "цифра"? Оказывается, имеет, причем непосредственное и прямое. И цифровой способ записи роднит, казалось бы, далекие друг от друга по назначению области магнитной видео - и звукозаписи с магнитной записью, лежащей в основе хранения громадного объема информации в современных ЭВМ. Высококачественная запись и воспроизведение звука - довольно сложная и трудная техническая задача, даже если учесть относительно высокий уровень развития современных технических средств. А теперь можно себе представить, насколько сложная задача решается при записи звука и изображения и последующего их воспроизведения, что осуществляется с помощью видеокамер и видеомагнитофонов. Магнитная лента в этом случае должна запомнить не только особенности звука, но и более сложные особенности света, его цветовой гаммы, яркости, контрастности и т.п., чтобы видимое на экране изображение приблизить к реальному воспроизводимому объекту, т.е. сделать его естественным, натуральным.

Приблизиться к живому образу помогает магниторезистивное воспроизведение. Сущность магниторезистивного воспроизведения проста. Изменяющееся магнитное поле рассеяния вызывает изменение электрического сопротивления помещенного в него магниторезистивного элемента, снимаемое напряжение с которого соответствует сигналу воспроизведения.

Магниторезистивное воспроизведение используется не только в запоминающих устройствах с подвижным носителем. Применение его гораздо шире. На магниторезистивном принципе может быть основано воспроизведение информации в запоминающих устройствах большой емкости, позволяющих реализовывать логические функции и длительно хранить информацию без разрушения. Магниторезистивные элементы могут быть использованы во многих высокочувствительных устройствах и приборах.

Преимущества магниторезистивного воспроизведения проявляются в полной мере в цифровых системах записи и воспроизведения. В настоящее время многие фирмы уже предлагают потребителю высококачественные цифровые магнитофоны.

Сегодняшний массовый потребитель оценивает качество современной бытовой радиоаппаратуры не по рекламным сообщениям или популярным статьям, а по четкости телевизионного изображения, сочности красок, естественности звучания и т.п., т е. по тому, насколько близко соответствует воспроизводимая картина реальному живому образу.

Что же дает обращение к цифре? Цифровой сигнал, так же как и аналоговый, подвержен искажениям - и частотным, и нелинейным, и шумовым наслоениям. Но для цифрового сигнала они не страшны, исказить цифровой сигнал - это значит совсем убрать какой-либо импульс или ввести импульс там, где была пауза. Такие искажения можно предотвратить, а более мелкие, меняющие форму импульса или нарушающие чистоту паузы, нетрудно устранить. Для этого используется электронный блок - регенератор цифрового сигнала. Из него выходят неискаженные, отреставрированные последовательности импульсов - пауз, из которых после цифро-аналогового преобразования рождается практически неискаженный аналоговый сигнал, а значит, в конечном результате и неискаженный звук. Достаточно сказать, что в системах цифровой звукозаписи уровень шумов незначителен, т.е. они гораздо слабее основного сигнала и практически не слышны.

Таким образом, цифровая звукозапись и согласующееся с ней магниторезистивное воспроизведение - реальные средства приближения к воспроизведению тембрового богатства и соловьиного пения, и большого оркестра, а также ярких красок на весеннем лугу т.е. реальные средства для последовательного, поступательного приближения к воспроизведению живого образа того или иного объекта.

2.4 Голографическая память

Весьма важным является быстродействие памяти, обусловленное инерционностью процессов записи, поиска, считывания и в случае реверсивного носителя - стирания. Запись и считывание описываются скоростью обмена информацией, поиск и стирание - продолжительностями этих процессов.

Резкое увеличение емкости памяти требует и обязательного роста скорости обмена информацией. Иначе "электронный архив" превратится в "электронную свалку". А повышения быстродействия фактически невозможно добиться, лишь совершенствуя, улучшая дисковые накопители, - необходим какой-то иной принцип ввода (записи) и вывода (считывания) информации.

Необходима иная идейная концепция. Оказывается, такая концепция существует, она давно известна, интенсивно разрабатывается и уже привела ко многим достижениям в ряде областей техники. Речь идет о голографическом запоминающем устройстве.

Голографическое запоминающее устройство позволяет практически реализовать все те особенности, которые присущи человеческому мозгу, а также дополнить их возможностями цифровых ЭВМ. А чисто технические потенции этих устройств, разумеется, неизмеримо богаче, чем возможности мозга.

Однако прошло несколько десятилетий с начала разработки голографической памяти, а реальных конкурентоспособных устройств, которые можно было бы отнести к промышленным, а не к лабораторным, до сих пор нет. В чем же дело? Все тот же известный диссонанс идейных концепций и "элементной базы". Мы ставим здесь кавычки, так как в наш "технологический век" именно то, что иногда высокомерно, по старинке, называют "элементной базой", составляет физико-техническую основу, вернее, сущность новых направлений. Транзистор, интегральная схема, микропроцессор - эти "элементы", каждый в свое время, определяли "лицо" вычислительной техники и не только параметры конкретных ЭВМ, но и всю идеологию этого научно-технического направления. Появился лазер - и возникли квантовая радиофизика, топография, нелинейная оптика. Хотя, строго говоря, идейные основы этих направлений были известны намного раньше. Но только лазер дал каждому из них жизнь.

Элементная база оптических дисковых накопителей сложилась к концу 70-х годов, и конечно же, не случайно именно в начале 80-х начался "бум" в развитии и этого направления.

С голографическими запоминающими устройствами ситуация, увы, иная. Используемые в лабораторных разработках элементы - газовые лазеры, разнообразные оптические затворы, дефлекторы, транспаранты - еще очень несовершенны. Как правило, они громоздки, недолговечны, сложны в изготовлении и эксплуатации, обладают недостаточно высокими значениями определяющих параметров. В элементах используются разнородные материалы, они не всегда хорошо согласуются друг с другом. Реверсивные голографические среды, структуры для многослойной объемной записи вообще еще очень далеки от практического применения. Приходится констатировать, что "элементная база" голографической памяти - если оценивать ее с позиций промышленного производства - еще не создана.

Правда, в последнее десятилетие в развитии ряда направлений оптоэлектроники достигнуты значительные успехи, которые косвенно, а иногда и прямо способствуют решению рассмотренной проблемы. Созданы полупроводниковые лазеры с высокой степенью когерентности излучения, позволяющие записывать качественные голограммы. Развивается интегральная оптика, в рамках которой традиционные объемные оптические элементы заменяют тонкопленочными. Тонкопленочные оптические затворы могут переключаться напряжением всего в несколько вольт, при этом время переключения может быть менее 1 нс. Непрерывно улучшаются характеристики пленочных акусто-оптических дефлекторов, заметны сдвиги и в совершенствовании оптических транспарантов. Все это вселяет оптимизм.

Оптическая память с ее огромной плотностью записи, сверхвысокими скоростями обмена информацией, способностью оперировать и с цифрами и с образами, с ее надежностью, долговечностью, ничтожно малой "стоимостью хранимого бита" заслуживает, чтобы на ее становление и развитие человечество не пожалело сил.

2.5 Нейронные сети

В 80-90-е годы прогресс в развитии вычислительной техники многие связывают с созданием искусственных нейронных сетей. Успехи в разработке и использовании нейрокомпьютеров определяются их принципиально новым свойством - возможностью эффективного самообучения в ходе решения наиболее сложных задач.

По своей сути нейрокомпьютер является имитацией человеческой нейронной сети. Поэтому стоит сделать ряд замечаний об устройстве головного мозга. Основная элементарная ячейка мозга - нейрон - имеет объем всего лишь 10-3 мм и массу 10-6 г. Нервная ткань, покрывающая полушария головного мозга слоем толщиной в несколько миллиметров, окрашена в два цвета. Серые нейроны окружены белыми отростками - аксонами и дендритами, которые проводят нервные импульсы к другим клеткам. Нейрон взаимодействует с нейроном, посылая ему электрический сигнал - нервный импульс. Помимо электрической, нейрон обладает еще и химической активностью. При этом для дальней связи служит длинный отросток нейрона - аксон, который способен усиливать сигнал и передавать его без затухания со скоростью до 100 м/с и выше. Дендриты служат в основном для приема сигналов, хотя могут с затуханием передавать сигнал до мишени на небольшие расстояния.

Используя терминологию вычислительной техники, можно сказать, что нейрон является бинарной ячейкой. Он может находиться либо в возбужденном, либо в невозбужденном состоянии. Наибольший интерес представляет то, как ему удается изменять свое состояние в результате взаимодействия с другими нейронами и клетками. Сам по себе нейрон не генерирует никакого выходного сигнала, пока суммарный входной сигнал не превышает определенной пороговой величины. Если же порог превышен, то нейрон начинает посылать сигналы другим нейронам. В нейронной сети полезная информация запоминается не отдельными нейронами, а группами нейронов, их взаимным состоянием. Можно считать, что каждый нейрон в большей или меньшей степени связан примерно с 104 нейронами. Принимая внешнюю информацию и обмениваясь внутри головного мозга, каждый отдельный нейрон имеет возможность последовательно приближаться к принятию в сложной внешней обстановке правильного решения и переходу в нужный момент в нужное (возбужденное либо невозбужденное) состояние. При этом человеческий мозг в целом также имеет возможность последовательно принимать правильные решения.

Чем больше объем нейронной сети, тем более сложную задачу можно решить с ее помощью. Например, при машинном чтении текстов для распознавания трех букв использовалась сеть из 32 нейронов. Распознавание алфавита, включающего 26 букв, требует 260 нейронов.

Ученые научились моделировать нейронные сети, используя метод последовательных приближений. Однако в цифровой вычислительной технике весьма сложно решается проблема соединений между большим количеством ячеек. А для 104 ячеек, как несложно вычислить, необходимо порядка 108 межсоединений. Как считают многие специалисты, на достаточно высоких частотах уже такое количество межсоединений принципиально нельзя осуществить даже в перспективных технологиях изготовления интегральных микросхем.

Другое дело в оптической обработке информации, где необходимо лишь сформировать требуемый массив ячеек, а межсоединения осуществляются сами собой и практически без искажений в оптическом тракте системы. Магнитооптические управляемые устройства уже сегодня позволяют сформировать высококачественный массив бинарной информации из 104 ячеек, причем скорость обработки его по алгоритму нейронной сети на несколько порядков превосходит возможности человеческого мозга.

3. Мультимедийные системы и виртуальный мир

В 90-е годы на базе персональных компьютеров созданы мультимедийные системы со все возрастающим влиянием их на различные сферы деятельности. Попытаемся рассмотреть их с точки зрения диалектического единства и борьбы противоположностей. Но прежде всего о самом предмете рассмотрения и о том, как его представляют популярные периодические издания, чаще всего в рекламных целях.

Мультимедиа - это объединение нескольких каналов передачи информации от машины к человеку: звук, изображение, реже - движение реальных предметов. Подразумевается и обратная связь - действия человека должны напрямую и существенно влиять на ход событий в системе. Разработчики современных мультимедийных систем стремятся к возможно более точному моделированию реальности, созданию виртуального мира, в котором человек мог бы совершать то, что недоступно ему в реальности, и в котором он занимал бы ведущее место. Для этого прилагаются всевозможные усилия. Так, создан специальный шлем, позволяющий получить сразу несколько преимуществ: улучшенное восприятие стереофонического (объемного) звучания, возможность создания стереоскопического изображения. Специальные датчики следят за поворотами головы человека, и на мини-дисплеях меняется видеоинформация перед его глазами сообразно той картине, которую он должен увидеть, повернувшись.

Приведем дословное описание одной из многочисленных мультимедийных игр, например "Стреляющий корабль - 2000". "Основа игры вполне традиционна: вам предлагается на боевом вертолете выполнить одно из заданий командования (американского, разумеется). Вы летаете либо над Европой, либо в небе Персидского залива и рушите радары, мосты и танковые колонны. В бою будьте аккуратны, но безжалостны. Только в этом случае у вас появляется шанс вернуться на базу с победой. Ну а если не сложится - не беда". Ярые сторонники мультимедийных игр, отвечая на вопрос "почему мы играем?", подчеркивают, что спорить с неигравшим о прелестях игры - все равно, что рассказывать дальтонику о гениальности Гогена.

Что же заставляет людей просиживать перед мониторами часы напролет? Ответ простой - способность создавать альтернативную реальность с иными образами и атрибутами вещей, возможность погрузить свое "я" в ткань иного мира, мифа; игра, как правило, гуманна, победа добра и зла лежит на чашах весов, и в вашей воле, куда их склонить. В то же время наряду с изложенным выше восторженным описанием мультимедийных возможностей появляются, хотя и редко, такие, которые напоминают об обратной стороне медали; вот одно из них: "увлечение играми - причина серьезных разладов в семье". Некоторые увлеченные мультимедийными играми утверждают, что трехмерная графика, объемное звучание настолько увлекают игрока, что первое время невероятной кажется уже окружающая повседневная обстановка.

А теперь попытаемся разобраться в диалектике двуединого начала мультимедийной системы. Но прежде вспомним, чем люди занимались долгие тысячелетия по изгнании их за грехи из рая.

Они с усердием создавали себе вторую искусственную физическую природу, чтобы защитить себя от холода и жары с помощью одежды и жилищ (своеобразных искусственных приспособлений). Они изобретали средства передвижения на различной тяге, чтобы перемещаться по земле, в воде и в воздухе, и создавали разнообразное технологическое оборудование для выполнения простых и сложнейших операций. В результате всего этого вокруг человека стала формироваться искусственная оболочка, отгораживающая его от реальной физической природы и от ее дестабилизирующих факторов, т.е. от всего того, что ранее было принято считать средой обитания.

Среда обитания трансформировалась, появились признаки необратимых процессов. Люди стали пренебрегать реальной средой обитания, активно вторгаясь в нее и засоряя ее бытовыми и промышленными отходами. Плата за все это - глобальные экологические катаклизмы, потребовавшие региональных и глобальных мер экологической защиты и не менее глобальных экономических и социальных мер, связанных с жизненным обеспечением творцов искусственной физической природы.

Создание искусственной информационной природы - мультимедийной среды с ее альтернативной реальностью - виртуальным миром - имеет в определенном смысле те же характерные признаки. Исходная задача создания искусственной информационной природы заключалась прежде всего в управлении машинами. В качестве примера можно привести первый автоматический регулятор паровой машины Уатта. Усложнялась конструкция машин, и вместе с этим становились все сложнее устройства управления, многие из которых по "интеллектуальным" возможностям превосходят даже самого подготовленного специалиста. Профессионалы создают устройства управления микроклиматом жилища, различными средствами транспорта и технологическими комплексами. Программирование работы устройств искусственной информационной природы требует знания не только возможностей технических средств управления, их структуры и специфики, но и свойств рецепторного и рефлекторного аппаратов человека, а также законов психологии восприятия визуальных, акустических и тактических образов.

Программы функционирования таких устройств довольно сложны и доступны лишь узкому кругу специалистов. И вне всякого сомнения развитие работ в данном направлении вполне органично вписывается в более общую проблему совершенствования мультимедийных систем - именно в этом проявляется их неоспоримое положительное качество.

Стремительный рост информационного потока активизирует защитную реакцию человека, и неосознанно начинает появляться желание отгородиться от внешнего информационного воздействия: люди нашего поколения, как никогда ранее, почувствовали усталость от различного рода политической информации и прежде всего от явных идеологических спекуляций. В этом заключается одна из причин чрезвычайно большой популярности современной аудио - и видеотехники, позволяющей в определенной степени отгородиться от внешнего информационного потока. Но при этом не нужно забывать, что индивидуальные устройства памяти любых любимых видео - и аудиосюжетов выбираются из общего идеологического "корыта", заполняется которое чаще всего зарубежными "доброжелателями", преследующими вполне определенные политические цели.

В чем суть всех современных видеоигр - от простейших до самых завлекательных и сложных? Ответ на этот вопрос лежит на поверхности. Она заключается в создании для играющего искусственного информационного пространства - от несложных операций укладки кубиков или сбора яиц в лукошко до почти натуральных вылетов на боевых машинах, когда пробуждается присущее каждому человеку естественное желание обогнать, поразить, победить и т.п. Игра, как правило, начинается в медленном темпе, затем переходит в ускоряющийся режим, который в конце концов доходит до такого свободно выбранного темпа, когда человек полностью отключается от внешних информационных потоков. Монотонные движения и ритмы усыпляют человека, позволяют легко воздействовать на него, гипнотизировать его, парализовать его волю и подспудно вдалбливать в его сознание любую (в том числе вредную и опасную!) информацию.

Отгораживаясь таким образом от реальных информационных потоков жизни людей с ее реальными голодом, холодом, болезнями, войнами, страданиями и т.п. и оказавшись в виртуальном пространстве, где нажатием кнопки можно взорвать инопланетный космический корабль, сжечь город, наслать повальные болезни, насладиться интимом с "любимым человеком", наконец, быть "убитому" самому игроку в этих виртуальных видео-аудиотактических мирах, человек теряет ощущение реальности жизни. Он начинает пренебрегать реальными информационными потоками сообществ людей (от ячейки общества - семьи - до более крупных образований), жить в выдуманном мире, где ему хорошо и удобно только одному. Такой человек вряд ли сможет восхищаться ранним восходом солнца с его золотистыми, скользящими по земле лучами. Для него окажутся ненужными ни классическая музыка, ни классические произведения искусства и литературы, на которых воспитывались многие поколения людей, наделенных высокими нравственными качествами.

Страницы: 1, 2, 3, 4


бесплатно рефераты
НОВОСТИ бесплатно рефераты
бесплатно рефераты
ВХОД бесплатно рефераты
Логин:
Пароль:
регистрация
забыли пароль?

бесплатно рефераты    
бесплатно рефераты
ТЕГИ бесплатно рефераты

Рефераты бесплатно, реферат бесплатно, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.