бесплатно рефераты
 
Главная | Карта сайта
бесплатно рефераты
РАЗДЕЛЫ

бесплатно рефераты
ПАРТНЕРЫ

бесплатно рефераты
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

бесплатно рефераты
ПОИСК
Введите фамилию автора:


История, панорама современного естествознания и тенденции его развития

p align="left">Важной вехой в развитии анатомии стало творчество А. Везалия, исправившего ряд крупных ошибок, укоренившихся в биологии и медицине со времен античности. М. Сервет, павший жертвой протестантского религиозного фанатизма, и У. Гарвей исследовали проблему кровообращения. У. Альдрованди обратился к традиции античной эмбриологии, а его ученик В. Койтер, систематически изучая развитие куриного зародыша, заложил основы методологии экспериментального эмбриологического исследования. Г. Фаллопий и Б. Евстахий проводят сравнение структуры человеческого зародыша и взрослого человека, соединяя тем самым анатомию с эмбриологией.

Величайшим мыслителем, которому суждено было начать великую революцию в астрономии, повлекшую за собой революцию во всем естествознании, был гениальный польский астроном Николай Коперник. Еще в конце XV в., после знакомства и глубокого изучения "Альмагеста", восхищение математическим гением Птолемеем, сменилось у Коперника сначала сомнениями в истинности этой теории, а затем и убеждением в существовании глубоких противоречий в геоцентризме. Он начал поиск других фундаментальных астрономических идей, изучал сохранившиеся сочинения или изложения учений древнегреческих математиков и философов, в том числе и первого гелиоцентриста Аристарха Самосского, и мыслителей, утверждавших подвижность Земли.

Коперник первым взглянул на весь тысячелетний опыт развития астрономии глазами человека эпохи Возрождения: смелого, уверенного, творческого, новатора. Предшественники Коперника не имели смелости отказаться от самого геоцентрического принципа и пытались либо совершенствовать мелкие детали птолемеевской системы, либо обращаться к еще более древней схеме гомоцентрических сфер. Коперник сумел разорвать с этой тысячелетней консервативной астрономической традицией, преодолеть преклонение перед древними авторитетами.

Между 1505-1507 гг. Коперник в "Малом комментарии" изложил принципиальные основы гелиоцентрической астрономии. Теоретическая обработка астрономических данных была завершена к 1530 г. Но только в 1543 г. увидело свет одно из величайших творений в Истории человеческой мысли -- "О вращениях небесных сфер", где изложена математическая теория сложных видимых движений Солнца, Луны, пяти планет и сферы звезд с соответствующими математическими таблицами и приложением каталога звезд.

В центре мира Коперник поместил Солнце, вокруг которого движутся планеты, и среди них впервые зачисленная в ранг "подвижных звезд" Земля со своим спутником Луной. На огромном расстоянии от планетной системы находится сфера звезд (рис. 2).

Его вывод о чудовищной удаленности этой сферы диктовался гелиоцентрическим принципом. Только так мог Коперник согласовать его с видимым отсутствием у звезд смещений за счет движения самого наблюдателя вместе с Землей (т.е. отсутствием у них параллаксов).

В отличие от своих предшественников, Коперник пытался создать логически простую и стройную планетную теорию. В отсутствие простоты, стройности, системности Коперник увидел коренную несостоятельность теории Птолемея, в которой не было единого стержневого принципа, объясняющего системные закономерности в движениях планет.

объяснение смена движется вокруг неизменным в оси своего

Рис. 2. Гелиоцентрическая система Коперника

Коперник был уверен, что представление движений небесных тел как единой системы позволит определить реальные физические характеристики небесных тел, т.е. то, о чем в геоцентрической модели вовсе не было и речи. Поэтому свою теорию он рассматривал как теорию реального устройства Вселенной. Впервые получила времен года: Земля Солнца, сохраняя пространстве положение суточного вращения.

Теория Коперника логически стройная, четкая и простая. Она способна рационально объяснить то, что раньше либо не объяснялось вовсе, либо объяснялось искусственно, связать в единое то, что ранее считалось совершенно различными явлениями. Это - ее несомненные достоинства. Они свидетельствовали об истинности гелиоцентризма. Наиболее проницательные мыслители поняли это сразу.

Следующий шаг в мировоззренческих выводах был сделан монахом одного из неаполитанских монастырей Джордано Бруно. Познакомившись в 60-е гг. XVI в. с гелиоцентрической теорией Коперника, Бруно поначалу отнесся к ней с недоверием. Чтобы выработать свое собственное отношение к проблеме устройства Космоса, он обратился к изучению системы Птолемея и материалистических учений древнегреческих мыслителей, в первую очередь атомистов, о бесконечности Вселенной. Большую роль в формировании взглядов Бруно сыграло его знакомство с идеями Николая Кузанского, который утверждал, что ни одно тело не может быть центром Вселенной в силу ее бесконечности. Объединив гелиоцентризм Н. Коперника с идеями Н. Кузанского об изотропности, однородности и безграничности Вселенной, Бруно пришел к концепции множественности планетных систем в бесконечной Вселенной.

Бруно отвергал замкнутую сферу звезд, центральное положение Солнца во Вселенной и провозглашал тождество Солнца и звезд, множественность "солнечных систем" в бесконечной Вселенной, множественную населенность Вселенной. Указывая на колоссальные различия расстояний до разных звезд, он сделал вывод, что поэтому соотношение их видимого блеска может быть обманчивым. Он разделял небесные тела на самосветящиеся - звезды, солнца, и на темные, которые лишь отражают солнечный свет. Бруно утверждал, во-первых, изменяемость всех небесных тел, полагая, что существует непрерывный обмен между ними и космическим веществом, во-вторых, общность элементов, составляющих Землю и все другие небесные тела, и считал, что в основе всех вещей лежит неизменная, неисчезающая первичная материальная субстанция.

Именно Бруно принадлежит первый и достаточно четкий эскиз современной картины вечной, никем не сотворенной, вещественной, единой, бесконечной, развивающейся Вселенной с бесконечным числом очагов Разума в ней.

Новый взгляд на мир и человека в эпоху Возрождения позволил сделать выдающиеся открытия и создать новые теории, ставшие прологом научной революции XVI-XVII вв., в ходе которых оформилось классическое естествознание.

Глава 6. Научная революция XVI-XVII вв. и становление классической науки

Отправной точкой научной революции, в результате которой появилась классическая наука и современное естествознание, стал выход книги Николая Коперника "О вращении небесных сфер" в 1543 г. Но гелиоцентрические идеи, высказанные там, были всего лишь гипотезой, нуждавшейся в доказательстве. Поиск аргументов в пользу этой гипотезы и стал основной задачей научной революции XVI-XVII вв., которая начинается с работ И. Кеплера.

И. Кеплер -- великий астроном и математик

После работ Коперника дальнейшее развитие астрономии требовало значительного расширения и уточнения эмпирического материала, наблюдательных данных о небесных телах. Европейские астрономы продолжали пользоваться старыми античными результатами наблюдений. Но они устарели и часто были неточны. Проводимые же в ту пору европейскими астрономами наблюдения характеризовались большими погрешностями.

Кардинальные изменения наметились только в последней четверти XVI в. в трудах величайшего астронома мира Иоганна Кеплера (1531-1630).

Этот великий немецкий ученый (с удивительной судьбой, жизнь которого была полна невзгод и лишений) совершил величайший научный подвиг -- заложил фундамент новой теоретической астрономии и учения о гравитации. Он показал, что законы надо искать в природе, а не выдумывать их как искусственные схемы и подгонять под них явления природы.

Его первая книга, изданная в 1597 г., вышла под интересным названием "Космографическая тайна". В этой работе, находясь под влиянием пифагорейцев о всемогущей силе чисел, Кеплер поставил задачу найти числовые отношения между орбитами планет. Пробуя различные комбинации чисел, он пришел к геометрической схеме, по которой можно было отыскивать расстояния планет от Солнца.

В 1609 г. в Праге вышла в свет книга Кеплера "Новая астрономия, или Небесная физика с комментариями на движение планеты Марс по наблюдениям Тихо Браге".

В этой книге и были сформулированы первые два закона о движении планет.

1. Все планеты движутся по эллипсам, в одном из фокусов которых
находится Солнце.

2. Радиус-вектор, проведенный от Солнца к планете, за равные
промежутки времени описывает равные площади.

В 1619 г. выходит произведение Кеплера "Гармония мира", содержащее третий закон небесной механики: квадраты периодов обращения планет относятся как пути больших полуосей их орбит.

Кроме уже названных выше работ, Кеплер является автором оптических трактатов "Дополнения к Вителло", "Диоптрика". В работах по оптике он дает теорию камеры-обскуры, излагает теорию зрения, исправляя ошибки Алхазена, правильно объясняет близорукость и дальнозоркость, описывает конструкцию телескопа (трубы Кеплера), рассматривает ход лучей в линзах, приходит к выводу о существовании полного внутреннего отражения, находит фокусные расстояния плосковыпуклой и двояковыпуклой линз.

Из математических работ Кеплера наиболее известны "Рудольфовы таблицы" - это астрономические планетные таблицы, над которыми Кеплер работал более 20 лет. Названы они были так в честь императора Рудольфа II. Эти таблицы в течение почти двух веков служили морякам и астрономам, составителям календарей и астрологам и только в XIX в. были заменены более точными. Своими работами по математике Кеплер внес большой вклад в теорию конических сечений, в разработку теории логарифмов, способствовал разработке интегрального исчисления и изобретению первой вычислительной машины.

Для установления истинного сложного характера причин орбитального движения планеты требовалось уточнение основных физических понятий и создание основ механики.

В формировании классической механики и утверждении нового ми-ровоззрения велика заслуга Г. Галилея.

Г. Галилей -- один из основоположников опытного естествознания и новой науки

Основы нового типа мировоззрения, новой науки были заложены Галилеем (1564-1642). Он начал создавать ее как математическое и опытное естествознание.

В 1586 г. появляется первое небольшое сочинение Галилея о сконструированных им гидростатических весах. А в 1589 г. двадцатипятилетний Галилей назначается профессором математики в Пизанский университет.

Три года работы Галилея в Пизанском университете овеяны рядом легенд. Одна из них рассказывала о публичных опытах молодого профессора по сбрасыванию тел с "падающей" Пизанской башни. Подобные опыты Галилей проводил для опровержения учения Аристотеля о пропорциональности скорости падения весу тела. Галилей брал два тела, одинаковых по форме и размерам, например, чугунный и деревянный шары, чтобы отвлечься от влияния побочных обстоятельств (не учитывать сопротивления воздуха). Находя соотношения между скоростью и временем падения шаров, между пройденным путем и временем падения, он доказал, что тела падают с одинаковым ускорением.

В 1592 г. Галилей стал профессором университета в Падуе, где проработал 18 лет (по 1610 г.). Это был самый плодотворный период его деятельности. В эти годы он занимается вопросами механики (падение тел, движение их по наклонной плоскости и под углом к горизонту), гидро-статикой, теорией простейших машин и сопротивлением материалов. К концу падуанского периода Галилей открыто выступает против системы Птолемея - Аристотеля.

Услышав об изобретении зрительной трубы, Галилей начал работать над ее конструкцией. Первая труба, созданная им в течение года, давала увеличение в 3 раза. Вскоре он изготовил трубу с увеличением в 32 раза. Направив эту трубу на небо, Галилей обнаружил горы на Луне, четыре спутника у Юпитера, фазы Венеры. Млечный Путь оказался состоящим из множества звезд, число которых росло с ростом увеличения трубы. Все это не соответствовало взглядам Аристотеля о противоположности земного и небесного, а подтверждало систему Коперника. Галилей пишет "Звездный вестник", где спокойным, деловым тоном дает отчет о своих наблюдениях и делает выводы. Книга произвела на современников ошеломляющее впечатление. Галилея стали называть "Колумбом неба".

В 1612 г. Галилей издает свой труд "Рассуждения о телах, пребывающих в воде, и тех, которые в ней движутся". Работа была направлена против механики Аристотеля. Вслед за ней появляется письмо Галилея о солнечных пятнах. Это было уже столкновение с Аристотелем на главном участке, и оно не могло пройти не замеченным церковью. В своих доносах в святую инквизицию перипатетики1 обвиняли Галилея в том, что он доказывает движение Земли и неподвижность Солнца. Они пытаются добиться запрещения учения Коперника.

С 1616 по 1623 гг. Галилей хотя и молчит, но много работает, скрывая результаты своих трудов от внешнего мира. В 1629 г. Галилей закончил свою основную работу "Диалог о двух главнейших системах мира: Птолемеевой и Коперниковой". По этому поводу он писал: "Я довел почти до пристани мой "Диалог" и раскрыл весьма явственно многое, что мне казалось почти не-объяснимым". В "Диалог" вошли все произведения Галилея, все то, что было создано им с 1590 по 1625 г. Цель ученого - представить не только астрономические, но и механические доводы в пользу истинности учения Коперника.

Опровергая аргументы Птолемея против вращения Земли путем разбора множества механических явлений, Галилей приходит к открытию закона инерции и механического принципа относительности. Открытием закона инерции было ликвидировано многовековое заблуждение, выдвинутое Аристотелем, о необходимости постоянной силы для поддержания равномерного движения. Оказалось, что равномерное и прямолинейное движение, равно как и покой, может существовать при отсутствии всяких сил. Это имело огромное не только чисто научное, но и мировоззренческое значение. Как известно, к инерциальным системам отсчета относятся покоящиеся (неподвижные) системы и системы, которые движутся относительно неподвижных равномерно и прямолинейно. Равноправность таких систем Галилей доказывает различными опытами и логическими рассуждениями. В результате он приходит к очень важному выводу: "Никакими механическими опытами, проведенными внутри системы, невозможно установить, покоится система или движется равномерно и прямолинейно". Это и есть механический принцип относительности.

Книга Галилея "Диалог" вызвала восторг в научных кругах всех стран и бурю негодования среди церковников. Иезуиты немедленно начали кампанию против Галилея, которая привела ко второму процессу инквизиции в 1633 г. Инквизиция пригрозила Галилею не только осудить его как еретика, но и уничтожить все его рукописи и книги. От него требовали признания ложности учения Коперника. Галилей вынужден был уступить. Ценой тягчайшей моральной пытки, невероятных унижений перед теми, кого он так страстно бичевал в своих произведениях, Галилей купил возможность завершения своего дела.

Галилей по праву считается одним из основоположников опытного естествознания и новой науки. Именно он впервые сформулировал требования к научному эксперименту, состоящие в устранении побочных обстоятельств, в умении видеть главное и отвлечься от несущественного. Путем эксперимента Галилей опроверг учение Аристотеля о пропорциональности скорости падения весу тела. Он был первым, кто направил зрительную трубу на небо в научных целях, тем самым значительно расширив сферу познания. Это был переворот в мировоззрении и методе науки: бесконечная Вселенная могла исследоваться методами земной механики.

Галилей верил в силу человеческого разума, в бесконечность познания: "Кто возьмет на себя смелость поставить предел человеческому духу? Кто решится утверждать, что мы знаем все, что может быть познано?". Большое внимание он обращал на полноту и точность формулировок выдвигаемых положений. Следует заметить, что работы Галилея написаны языком, близким к современному.

Что же Галилей конкретно сделал в механике? Он пришел к открытию закона инерции и сформулировал механический принцип относительности движения, обобщенный позднее А. Эйнштейном. Галилей впервые дал строгое определение равноускоренного движения, нашел законы изменения скорости и пути в этом движении. Он показал, что такое движение свойственно свободно падающему телу.

Галилей доказал, что тело, брошенное под углом к горизонту, будет лететь по параболе. Он дал метод расчета траектории для любых углов вылета и различных начальных скоростей, показав, что наибольшая дальность полета достигается при вылете тела под углом 45° к горизонту.

Галилей впервые установил, что период колебаний маятника зависит лишь от длины подвеса (если массой подвеса можно пренебречь по сравнению с массой тела) и не зависит от амплитуды качаний (если она мала). Так как движение маятника можно рассматривать как последовательный ряд падений и подъемов тела по дуге окружности, то, в случае независимости скорости падения тела от его тяжести, маятники одинаковой длины должны иметь равные периоды колебаний независимо от веса грузов. Взяв два маятника с одной и той же длиной подвеса, одинаковые

по форме и размерам, но разные по весу, Галилей установил одинаковость их периодов колебания, опровергнув тем самым положение Аристотеля о большей скорости падения тяжелых тел.

Что касается оптики, то Галилей впервые не только предположил, что скорость света является конечной величиной, но и сделал первую попытку определить ее в земных условиях (это общеизвестный опыт с двумя наблюдателями, у каждого из которых имелся зажженный фонарь). Хотя опыт окончился неудачей (иначе и не могло быть из-за большого значения скорости света, о чем Галилей не предполагал), но сама попытка доказать конечность скорости света и в принципе верная методика были для того времени, несомненно, очень смелым и прогрессивным шагом.

Галилей расчистил путь для творцов классической и современной физики, и его бессмертные творения будут всегда служить примером того, как гениально он "всю жизнь читал открытую для всех великую книгу природы".

Факел научного знания, зажженный Галилеем, подхватил И. Ньютон. В его трудах и открытиях дело жизни итальянского ученого нашло свое блестящее завершение.

И. Ньютон и создание фундамента классической физики

Результаты естествознания XVI-XVII вв. обобщил Исаак Ньютон (1643-1727). Именно он завершил постройку фундамента нового классического естествознания.

Первые научные работы Ньютона относятся к оптике. В 1666 г., пропуская свет через трехгранную стеклянную призму, он обнаружил его сложный состав, разложив на семь цветов (в спектр), т.е. открыл явление дисперсии. Кроме того, обнаружив хроматическую аберрацию у линз и считая ее неустранимой, Ньютон пришел к выводу, что линзы в телескопе надо заменить сферическими зеркалами. В своих работах по оптике Ньютон поставил очень важный и сложный вопрос: "Не являются ли лучи света очень мелкими частицами, испускаемыми светящимися телами? ". Последователи Ньютона ответили на этот вопрос утвердительно и однозначно, и гипотеза истечения, подкрепленная авторитетом Ньютона, стала господствующей в оптике XVIII в., несмотря на возражения против нее Ломоносова, Эйлера и других ученых, несмотря на успехи волновой теории Гюйгенса.

Очень интересна также мысль Ньютона о возможном превращении тел в свет и обратно. "Превращение тел в свет и света в тела соответствуют ходу природы, которая как бы услаждается превращениями", - говорил Ньютон. И действительно, в 1933-1934 гг. были открыты факты превращения заряженных частиц электрона и позитрона в свет и обратно. Так Ньютон предугадал одно из далеких будущих открытий атомной физики.

1687 год вошел навсегда в историю физики как год выхода в свет выдающегося труда профессора Кэмбриджского университета Исаака Ньютона "Математические начала натуральной философии" (иногда его называют "Математическими основами естествознания" и даже просто "Началами"). Однако многие тогда не поняли значения этого события для науки. Достаточно сказать, что некоторые из профессоров университета, по словам секретаря Ньютона, получив экземпляр "Начал" и перелистав его страницы, хмуро заявляли, что надо лет семь еще учиться, прежде чем что-нибудь понять в этой книге.

"Начала" - вершина научного творчества Ньютона - состоят из трех частей: во- первых двух речь идет о движении тел, последняя часть посвящена системе мира.

Приведем формулировку законов Ньютон в русском переводе сделанном академиком А. Н. Крыловым.

I. Всякое тело продолжает удерживаться в состоянии покоя или
равномерного прямолинейного движения, пока и поскольку оно не
понуждается приложенными силами изменить это состояние.

Изменение количества движения пропорционально приложенной движущей силе и происходит по направлению той прямой, по которой эта сила действует.

Действию всегда есть равное и противоположное противодействие, иначе, - взаимодействия двух тел друг на друга между собою равны и направлены в противоположные стороны.

Четвертым законом, который Ньютон формулирует в своих "Началах", был закон всемирного тяготения.

Во второй части Ньютон рассмотрел силы сопротивления среды при движении в ней тел, гидро- и аэростатику, законы волнового движения, простейшие случаи вихревых движений.

В третьей книге ученый изложил общую систему мира и небесную механику, в частности, теорию сжатия Земли у полюсов, теорию приливов и отливов, движение комет, возмущения в движении планет и т. д. Рассматривая все эти явления, Ньютон везде находит подтверждение своего закона тяготения.

"Начала" Ньютона знаменовали новую эру в развитии науки. Они явились прочным фундаментом, на котором успешно строилась физика XVIII-XIX вв., получившая название классической. Книга подводила итог всему сделанному за предшествующие тысячелетия в учении о простейших формах движения материи.

В работах Ньютона раскрывается его мировоззрение и методология исследований. Ньютон был стихийным материалистом. Он был убежден в объективном существовании материи, пространства и времени, в существовании объективных законов мира, доступных человеческому познанию. Своим стремлением свести все к механике Ньютон поддерживал механистический материализм (механицизм).

Свой метод познания, названный впоследствии методом принципов, Ньютон изложил в "Правилах философствования". Этих правил четыре.

Не принимать в природе иных причин сверх тех, которые истинны и достаточны для объяснения явлений.

Одинаковым явлениям необходимо приписывать одинаковые причины.

3. Независимые и неизменные при экспериментах свойства тел, подвергнутых исследованию, надо принимать за общие свойства материальных тел.

4. Законы, индуктивно найденные из опыта, нужно считать верными, пока им не противоречат другие наблюдения.

Нельзя не сказать о математических достижениях Ньютона, без которых не было бы и его гениальной теории тяготения. Свой метод расчёта механических движений на основе бесконечно малых приращений величин - характеристик исследуемых движений - Ньютон назвал "методом флюксий" и описал его в сочинении "Метод флюксий и бесконечных рядов с приложением его к геометрии кривых" (закончено в 1671 г., полностью опубликовано в 1736 г.). Вместе с методом Г. Лейбница он составил основу дифференциального и интегрального исчислений. В математике Ньютону принадлежат также важнейшие труды по алгебре, аналитической и проективной геометрии и др.

Глава 7. Естествознание XVIII в.

В XVIII в. в механику проникают методы дифференциального и интегрального исчислений, и она становится аналитической.

Огромная заслуга в развитии механики принадлежала петербургскому академику Леонарду Эйлеру (1707-1783) и парижскому академику Жозефу Луи Лагранжу (1736-1813). "Mexaника" Эйлера появилась в 1736 г. в Петербурге в 2 томах. Eго же "Теория движения твердого тела", рассматриваемая как 3-й том "Механики", вышла в 1765 г. Эйлер определяет механику как науку о движении, изложенную аналитически (методами анализа), "благодаря чему только и можно достигнуть полного понимания вещей".

Страницы: 1, 2, 3, 4


бесплатно рефераты
НОВОСТИ бесплатно рефераты
бесплатно рефераты
ВХОД бесплатно рефераты
Логин:
Пароль:
регистрация
забыли пароль?

бесплатно рефераты    
бесплатно рефераты
ТЕГИ бесплатно рефераты

Рефераты бесплатно, реферат бесплатно, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.